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INTRODUCTION

Structural mechanics is a science which studies the strength,
the rigidity and the stability of engineering structures and parts
thereof. The strength of materials dealing with the strength,
rigidity and stability of isolated members; the theory of elastici-
ty, which is concerned with the same problems but gives more
strict solutions; the theory of plasticity which investigates the
stresses and strains of plastic and elasto-plastic materials, and
finally the theory of structures which studies the steength, rigid-
ity and stability of whole structures—all form parts of this
discipline.

It was Leonardo da Vinci (1452-1519), the great [lalian scien-
tist and artist, who was the first to formulate a number of valuable
ideas on the sirength of materials. These ideas never became widely
known and remained confined to his manuscripts on mechanical
research. In those days, large-scale studies of problems which [orm
the subject of contemporary struclural mechanics were uftterly
impossible. Only partial solutions of isolated problems related to
the strength of certain structural members could be obtained.

The eminent physicist, mathematician and astronomer Galileo
Galilei (1564-1642) is generally considercd to be the father of scien-
tifie studies in the sirength of engineering materials and structures.
In those days the expansion of maritime trade called for large
increases in the tonnage of cargo vessels and for improvements
in their design. Dealing with these questions Galilei discovered
that the ship's overall strength and sea-worthiness could not be
satislactorily ensured simply increasing the dimensions of her
members in direct proportion to her size. Ie also proved that the
dead weight to ultimate load ratio may differ for geometrically
similar bodies.

Galilei's studies of beams subjected to bending led him to a num-
ber of valuable conclusions which have not lost interest up to dale,
hut he was unable to develop a true flexural theory, as he proceeded
from a false conception that the whole cross seetion of the beam is
uniformly extended. Neither had Galilei any knowledge of the rela-
tion existing between stresses and strains. The simplest form of
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this relation was discovered i 1678 by Robert Hooke who expressed
it as “ul tewsio sic vis" (“the extension is as greal as the foree™).

The raet that compressive siresses as well as the tensile ones exist
in the cross seelion of a heam subjocted Lo bending was discovered
in the second half of the 18th century as the outcome of a series of
lests conducted wilh great thoroughness. At thal time the rapid
developraent, of trades and indumstries was constantly calling for
new seientific achievements among which was the corvect solution
of the problem of bending put by Galilei.

Significaut advances  in higher mathematics and mechanies
achieved in the 18th ceatury contributed greatly lo the develop-
ment of studies in the strength of materials and structures. Works
by J. Lagrange and L. LEuler were of parlicular imporlance in this
respect.,

Vigorous growth ol industey in the 19th century, the introduc-
tion of the steam engine, the conslruction of railways, bridges,
dams, canals, large steamships and greal buildings accelerated
the studies in the strength of engincoring materials and structures.
The evergrowing complexily of structural forms and the pressing
demand for a redoction in building costs resulted in the develop-
ment of new methods of slrength computation and in the lormation
of a new engincering science—structural mechanics (also caflod
the theory of structnres).

Trusses, arched systems, retaining walls and rigid [rames form
the main classes of structnres deall. with by wmodeen  straclural
mechanics.

In their simplest form many of these strnetures had been already
used by the ancicuts, bul the methods of their computation remained
unknown.

AL present, trugses and triangulated systems are widely used
in bridge and roof construclion (bridege and roof lrusses) as wall
as in Llravelling cranes, tower cranes, power-line towers, acrial
supports and in a large number of other struetures.

Arched systems made their appearance in ancient Rome. where
they were successfully used for the construction of masonry bridges
and aqueducts. In the second half of the 19th century these systems
became used in steel-bridge construction and in the 20Lh century
reinforced concrele becomes the main waterial usod for that type
of structures. At presenl arched systems are widely used in many
kinds of large-span construction work.

Retaining walls have been used to prevent the sliding down of
steep slopes in various branches of engincering activitios sinee times
immemorial. Rigid frames became widespread in modern times.
reinforced conerete and steel frames being currently used for the
construction of single and multistoried industrial and other buildings.
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As a resull, melhods of compulation of complicated redundant
giructures have been further perfectioned and simplified Lo such
an extenl that today they are uvsed in everyday design practice.

Important advances have also been made in the studies of thin-
walled tubular scctions which are [requently utilized in aireraft
construnction as well as in olber branches ol engineering. Various
problems related to the stability of structures have been successfully
solved, OF lale the dynamics of eagineering structures have been
acquiring an ever increasing imporlance. [t forms now a separale
branch of the steuctural mechanics, same as the vheory of naval
and aeronautical architecture.

Among the Soviet scienlists and research workers the following
have made the greatest contributions to the development of structur-
al mechanics: A. Krylov, B. Galerkin, A. Gyozdev, B. Zhemochkin,
1. Rabinovich, N. Strelelsky, L. Prokolyev, N. Bezukhov, N. Belya-
ev, V. Bolotin, K. Zavriev, A. Smirnov, S. Ponomarev, V. Vlasov.
M. Filonenko-Borodich, P. Papkovich and N. Snitko.






1- KINEMATIC ANALYSIS
OF STRUCTURES

1.1. SUPPORTS

Struetural mechanics deals wilth unyiclding systems or structures.
in other words, with such structural systems no peoint of which
can be digplaced without a deformation of their elements. The immu-
tability of such systems (their geometrical stahility) with relation
to the ground * is ensured by means of supports. Reactions arising
at these supports together with the applied loads form a balanced
system of outer or external forces which maintain the structure in
equilibrium,

Let us first examine the different types of supports which may
be encountered in plane structures.

The first type as represented in Fig. 1.1 congsists of two rockers
(the upper and the lower one) with a pin in between permitting
the rotation of the upper rocker with respect to the lower one.
At the same time both rockers can move together on rollers along
the bearing plate.

Thus, Lhe system has two degrees of freedons, the friction developed
in the bearing being usually neglected. The reaction of this type
of support passes through the centre of the pin and is perpendicular
to the bearing plate surface, i.e.. to the surface along which the
rollers may travel. Thus, only one parameter of the reaction, i.ec.,
its magoitude, has to be known in order to determine this reactlion
completely. -

Supports of this type are known as free end or movable roller
supports. Schematically they are represented by one bar with hinged
ends** (Fig. 2.1).

The har is conventionally considered to be of infinite length;
its upper extremity may move only along a straight line, normal

+

* The word ground will hereafter refer to any rigid invariable body.

=% In some cases muvubl_a supports aclually consist of a vertical element
with hinges at both exiremities, in which case ﬂ]ﬂy are referced to as pendulum
supports.
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2.1. Geometrical Stability of Framed Structures ) g

to its axis, a straight line being a circumference of infinito radius.
The bar is also regarded as infinitely rigid so that its strains can
be completely disregarded. These two conventions fit very closely
into the actual working conditions of supports of the type just
described.

The second type of supports differs from the first one by the fact
that the lower rocker is fixed and cannot move (Fig. 3.1). This type
of bearing possesses only one degree of freedom. [t is usually termed
hinged immovable or fized end support.

The reaction will still pass through the centre of the pin, but
its direction may be arbitrary, and accordingly todetermine it
completely two parameters have to be found—its magnitude and
direction (or, whichis the same, the magnitude of two of its compo-
nents, say, the vertical and the horizontal one).

Schematically the second type of support may be represented
by two bars with hinges at their ends, the top hinge being common
to both bars (Fig. 4.1). That fixes the point of application of the
reaction which coincides with the top hinge, but in this case the
direction of this force remains unknown,

The directions of the bars themselves may be chosen at will as
any force may be resolved into two components of any direction.

The third type of support is the built-in end (Fig. 5.1) whose
degree of freedom is nil. The determination of the reactions devel-
oped by this support requires the knowledge of three parameters—
the direction and magnitude of a force passing through any point
chosen at will and the magnitude of the moment about the same
point. Actually this forms a combination of the reaction of a hinged
immovable support with the reactive moment.

This type of support may be represented by three bars as in
Fig. 6.1. To attain perfect rigidity of the support the distance /,
must be regarded as extremely small or the built-in end of the beam
as absolutely rigid.

It is worth noting that the rnwmber of bars in these schematic repre-
sentations of supports is always equal to the number of parameters
determining completely the reaction at this support.

2.4. GEOMETRICAL STABILITY OF FRAMED STRUCTURES

Framed or through siructures consist of a series of separate, usually
slraight, members connected together by welded, riveted, bolted
or other types of joints. One of the simplest two-dimensional forms
of framed structures is the plane truss.

In most cases the joints of framed structures are nof hinged and
possess a certain degree of rigidity. The exact computation of trusses
with rigid joints is extremely complicated as the system becomes

2—8§53
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many times statically indeterminate. On the other hand, when rigid
joints are. conventionally replaced by hinged ones, the analysis
becomes greatly simplified and under certain conditions equations
provided by statics alone will suffice.

Tests carried out as well as the results of theoretical analysis
indicate that in general the conventional introduction of hinges
does not lead to any substantial errors in stress computations per-
taining to through structures loaded with a system of forces acting
at the joints. Therefore, for design purposes ordinary trusses are
always regarded as being hinge-jointed.

Let us now examine a system consisting of three rigidly con-
nected straight bars as represented in Fig. 7.1a. If the rigid joints
are replaced by hinges, the system will continue to be unyielding
(Fig. 7.1b), i.e., it will be uncapable of undergoing any distortion
without the deformation of at least one of the bars.

Should, however, the quadrilateral system, shown in Fig. 8.1a,
undergo the same treatment, we shall obtain a system whose shape
can be altered (Fig. 8.1b) without any deformation of its
members.

The simplest unyielding system consisting of a number of separate
pin-jointed bars is a triangle with hinges at all the three vertices
(Fig. 7.1b).

Let us establish the rules governing the formation of geometri-
cally stable systems comprising more than three pin-jointed bars.

In the first instance let us examine a system consisting of two
bars (Fig. 9.1) placed along a straight line and connecting joint
C with two fixed points 4 and B. If the bars AC and BC were
disconnected at point C, the extremity C' of bar AC would become
free to move along the circular arc m-m, while the extremity C
of bar BC—along the arc n-n, the two arcs having a common tangent
at point C. It follows that if the extremity C of one of the two bars
moves over a very short stretch along a perpendicular to AB, the
other bar will offer no resistance. Thus, the system is geometrically
unstable, as its shape can be altered without any change occurring
in the length of its members or, in other words, without any defor-
mation of the bars.

Hereunder we shall refer to systems consisting of two bars placed
along a straight line (see Fig. 9.1) as instantaneously unstable,
these systems becoming rigid as soon as a small shift of point C
along the perpendicular to 4B has been completed.

The situation would change entirely if the two bars AC and BC
were not in alignment (Fig. 10.1). In this case the circumferences
m-m and n-n have no common tangent, and, therefore, even the
slightest displacement of joint C is impossible without a correspond-
ing deformation of the bars.
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It follows that each additional joint forming part of a geomet-
rically stable system must be atfached thereto by means of two sepa-

Fig. 11.1

g & I7

rate bars the axes of which do not lie
on the same line.

Consequently, any system devel-
oped from a hinged triangle by suc-
cessive addition of joints, each new
joint being connected to two existing
ones by two bars not in alignment,
will be geometrically stable (invar-
iable). Systems so formed will be
called hereafter simple framed struc-
tures in order to distinguish them
from the complicated ones, usually
derived from the former by replace-
ment of a number of bars or by
superposition.

All the plane trusses represented
in Fig. 11.1 belong to the simple
frames, each having been obtained
successively by adding hinged joints
to a basic pin-connected triangle
abe, in the sequence indicated. Any
triangular combination of three
pin-jointed bars may serve as a basis
for verifying the geometrical stabil-
ity of simple framed structures.

Thus, any system consisting solely
of triangles is obviously unyielding
{geometrically stable). This property
may be checked with equal success
in areverse order, viz., by rejecting
one by one all the hinged joints
together with the two bars abutting
to cach of them. If in the ouicome
a pin-jointed triangle is obtained the
system is geometrically stable.

T.et us now establish the rela-
tion between the number of bars

and joints forming a simple truss. As stated above, such a truss
consists of one basic pin-jointed triangle, to which a number of
additional joints have been successively attached, each by means
of two separate bars not in alignment. Let S be the number of bars
and K the number of joints. The basic triangle consists of three bars
and three joints; all the other joints, numbcring (K — 3) are
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attached by means of two bars each. Therefore, the total number
of bars in a simple truss will be

S=34+2(K—8)=2K—3 (1.1)

It the number of bars § << 2K — 3, the truss does not contain
a number of bars sufficient to ensure its geometrical stability and

(a) () (e)
Pig. 12.1
the system will evidently be unstable. An example of such a system

is furnished by a quadrangle (Fig. 12.1a) characterized by S = 4
and K = 4. Consequently

S=4<<2K—3=2%X4—3=5

This guadrangle may be converted into an unyielding system
by adding a fifth diagonal bar, as shown in Fig. 12.15. Should

sy

Fig. 13.1

(rr)

we introdnce a second diagonal bar which would give a total of
six bars as against four joints (Fig. 12.1c), this sixth bar would
be redundant from the view-point of geometrical stability. This
example shows that we may encounter geometrically stable systems
for which § > 2K - 3.

It should be noted that the condition S > 2K — 3, though neces-
sary, is not sufficient to ensure the geometrical stability of a hinge-
connected system. Thus, the truss represented in Fig. 13.1e is
unstable although the number of ite bars totals exactly 2K — 3.
The truss shown in Fig. 13.1b has an even greater number of bars
but still remains unstable. This is due to the fact that the right-
hand panels of both these trusses consist of hingejointed rectangles.
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trurthermore, in certain cases framed structures for which the con-
dition § = 2K — 3 is fulfilled may be instantancously unstable.

Let us now consider the problem of connecting geometrically
stable systems to the ground by means of supports.

Structure (plate)

Structure (plate)

Fig. 14.1

In the majority of cases a plane structure (which may be regarded
as a rigid disk or plate) will rest on two hinge supports—one movable
and the other fixed (Fig. 14.1a). This type of connection between

Common

Fig. 15.1

structure and ground is geometrically stable {unyielding). It is not
essential that two of the three supporting bars should have a common
hinge; indeed they may have none (Fig. 14.15).

However, should the directions of all the supporting bars intersect
at one and the same point (Fig. 15.1a), this point will constitute
an instantaneous centre of rotation about which the whole system
will be able to accomplish an infinitely small rotary movement.
(Practically such a displacement may become quite appreciable.)
Once this movement accomplished, the supporting bars will no long-
er concur at the same point and all further displacements will
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become impossible without a corresponding deformation of these
bars.

A system connected to the ground in the way just described will
be instantaneously unstable and, therefore, such an arrangement
of supports cannot be toleraled.*

On the contrary, three nonconcurring and nomparallel** bars
will always provide a geometrically stable support.

Fig. 16.1

Fig. 18.7

All the ahove applies equally to the connection of any two geo-
metrically slable structures (or rigid plates) betwcen themselves
thus permisting to formulate the following rule: fwe rigid plates will
form a geometrically stable (unyielding) system if they are connected
together by means of three bars which are not parallel and de not con-
verge at a common point of inlersection.

It a hinge is placed at the point of intersection of any two of the
three bars and is conneeted to the plate, the system will remain
unyielding and may be regarded as consisting of two separate plates
connected by means of one common hinge and one bar (Fig. 15.18).
1t follows that two disks may be rigidly connected together using one
hinge and one bar provided the direction of this bar does not pass through
the centre of this hinge.

Three plates may be connected to form one single unyielding
syslem with the aid of three hinges placed at the vertices of a trian-
gle, each of these hinges connecting one pair of plates (Fig. 16.1).
Alternatively the same result will be obtained by placing six inde-
pendent bars (Fig, 17.1), as each hinge may be replaced by two hars
intersectingy al the centre of this hinge.

However,! the system represented in Fig. 18.1 is instantaneously
unstable, the interseclions of the bars connecting each pair of plates

+

#*As will be shown in Art. 6.4, even very small external loads may stress
the instantaneously nnstable systems very heavily, o
##Parallel lines having a point of intersection in the infinily,
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being in alignment. This system is similar to the one shown in
Fig. 9.1.

Thus, three rigid plates connected together with siz bars, provided
each pair of plates is connected by two bars and provided also the inter-
sections of these two bars do not lie along ore siraight line, will always
form an unyielding combination.

Fig. 19.1 shows a number of systems constituted as just described.

A plausible arrangement of a statically determinate multispan
(cantilever) beam is illustrated in Fig. 20.1 (such systems heing

Fig, 21.1

described in greater detail in Art. 9.2). Let us check the geometrical
stability of this beam. For this purpose, let us first select some
unyielding portion of the structure rigidly connected to the ground
and then let us see whether all the other geometrically stable parts
of the structure are connected to the former by means of a sulficient
number of bars. It should be kept in mind that the ground and any
portion of the structure connected to it with the required minimum
of three bars constitute an unyielding combination and therefore
it is quite immaterial on which of the two the connecting bars will
take support.

In the system under consideration bar 7 is rigidly connected
to the ground with the aid of three bars which have no common
point of intersection and which are not parallel. Bar 17 rests on two
uprights standing directly on the ground and is attached to bar
I by means of the insert ab. Bar II7 is connected to bar /7 in
a similar way. Finally, the hinge ¢ and an upright connect the last
member ¢f to bar IIT and to the ground, respectively. Consequently
the system as a whole will be geometrically stable.

Another illustration is afforded by the structure of Fig. 21.1.
The lateral parts I and TII may be regarded as simple stays AD
and CF, and then it becomes apparent that plate I is connected
to the ground by means of three bars (one vertical B and two inclined
ones AD and CF) all of which intersect at one and the same point E.
This system is, therefore, instantaneously unstable.
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3.1, STATICALLY DETERMINATE FRAMED STRUCTURES

As has been stated, an unyielding connection of a structure with
the ground may be schematically represented by three nonconcurrent
bars. This type of connection is statically determinate as the number
of reactive forces in these bars is equal to the number of equations
furnished by statics for coplanar forces in equilibrium (for inslance,

Any plane structure will be externally statically determinate (i.e.,
statically determinate with reference to the supports) if the number

Directions of support
regctions

Fig. 22.1

of parameters determining the reactions at these supporis is equal to
three. The supports in the following examples fulfil this condition:

(1) A combination of one fixed and one roller support for two-
dimensional structures supported at two points (Fig. 22.1a).

(2) A combination of three roller supports for the same type
of structures resting on three fulera, provided the directions of
the three reactions are neither concurrent nor parallel (Fig. 22.1b).

If a geometrically stable system rests on four or more supporiing
hars, three of which have no common point of intersection and are
not parallel, the structure as a whole is statically indeterminate
or redundant (Fig. 23.1). Equations provided by statics become
insufficient for the analysis of such structures, additional equations
hased on the study of deformations or strains becoming indispensable.

Having formulated the conditions under which a structure is
externally statically determinate, let us now examine those which
render a framed structure internally statically determinate, i.e.,



3.1, Statically Determinate Framed Struclures 27

VAN - -k e

Fig, 23.1
f
a_ v b
a Vg TN
{4
N ] [
(6) - g
Fig, 24.1 Fig. 25.1

Fig. 27,1



28 Kinematic Analysis of Structures

such where the forces acting in all of its bars may be computed using
equations of equilibrium alone.

It may be easily shown that stresses in the bars of a hinged truss
subjected to concentrated loads acting at the joints will be always
normal to the cross sections of these bars. Indeed, having separated
one of the bars, say, bar ab, let us analyze the conditions of its
equilibrium (Fig. 24.1a, b). :

If no external load is applied directly to this bar, its equilibrium
will be ensured only in the case when the forces & acting on the
bar through the hinges @ and b are equal in amount but opposite
in direction. These forces will always pass through the centres of
the hinges since in our analysis these are assumed to be frictionless.
It follows that forces N will act along a line connecting the hinge
cenlres and, therefore, the cross sections of bar ab will be subjected
either to direct tension or to direct compression.

Should the truss contain curved bars, these will be subjected to
bending moments in addition to the normal forces just mentioned,
the maximum value of these moments equalling Mppe = XF
(Fig. 25.1).

When the truss as a whole is in equilibrium under the action
of external loads and reactions (Fig. 26.1a), cach of its joints is
also in equilibrium (Fig. 26.18). Accordingly, the external load
applied to any joint and the internal forces in the bars converging
at Lhis joint must be balanced.

Statics will furnish each joint subjected to a system of concurrent
coplanar forces with two equilibrium equations

ZX =0 and Y =0

If the truss contains K joints, we may form 2K equations of
equilibrium which must provide for the determination of all the
internal forces in the members and of the three unknown param-
eters of the reactions. Any other equilibrium equations which
may be formed for the truss as a whole or for any part thereof can
be derived from the above and consequently will contain no addi-
tional information.

Hence the truss will be statically determinate, if the number
of its bars § is equal to double the number of joints X less 3

8=2%—3 (2.1)

As will be readily observed, this is the same relation as the one
giving the minimum number of bars of a geometrically stable system
{expression (1.1)].

Consequently, any simple truss obtained by the successive addition
of joints to a hinged triangle, each joint being connected by means
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of two bars not in alignment, is both geometrically stable and statically
deferminate.

If, when counting the number of bars of a truss, those forming
its supports were also taken into consideration, expression (2.1) will
become

St = 2K (3.1)

This formula hecomes particularly useful when the structure
though being geometrically unstable (the number of its bars totalling
less than 2K — 3) is connected to the ground ia such a way that
together they form a single unyielding and statically determinate
system. A structure of that type is represented in Fig. 27.1. ITere
K = § while the number of bars (supporting bars are omitted)
totals 12. Thus the structure is uwustable for

§=12 while 2K—3=13

However, §;,, (including the supporting bars) is equal to 16 which
satisfies equation (3.1} and therefore the whole system may he (and
in this ease actually is) hoth geometrically siable and slatically
delerminate.®

In a statically determinate system all the bars are absolutely indispen-
sable 1o ensure its geometrical stability, in other words, in suck a struc-
ture there is not a single superfluous (redundant) member.

When a geometrically stable system contains more bars than is
strictly necessary it becomes statically indeterminate or redundant.

The theory of strinctures analyzes only geometrically stable
systems hoth statically determinate and statically indeterminate or
redundant.

The reader is invited to find out on his own Lo which of these two
calegories Lhe slructures represented in IPig. 28.1 helong.

*

*The analysis of suval systems is considered in detail later (see Art. 6.4).
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1.2. GENERAL

The reader having alrendy studied the strength of materials must
be familiar with methods permitting the determination of siresses
acting over the cross sections of statically determinate simply sup-
ported beams, as well as with the construction of diagrams showing
the distribution of these stresses along a beam subjected Lo a system
of fixed loads. The same methods are used in structural mechanics.

The following sign convention will be adopted hereunder: The
shearing force Q (or simply the shear) will be considered positive when
it tends to uplift the left extremity of the right-hand portion of a beam
with reference to the right extremity of the left-hand portion. The bend-
ing moment M will be reckoned positive when it tends to rotale the lejt
extremity of the right-hand portion of a beum clockwise and the right
extremity of the left-hand portion counterclockwise.

When the loads are nof at right angles with the axis of a beam,
the latter will also be subjected to forces N normal to its cross
sections. These will be regarded as positive when they cause lensile
stresses and negative when these stresses are compressive.

Positive directions of bending moments, shearing and normal
forces are shown in Fig, 1.2, It will be seen that a positive bending
moment causes compression of the top fibres of a beam and an exten-
sion of the lower ones, while a positive shear will tend to rotate each
portion of the beam clockwise with respect to its other end.

When plotling the diagrams of shearing and normal forces their
posilive values should be scaled off above the z-axis and the negative
ones below. It is good praclice to indicate prominently on the stress
diagrams the signs of the corresponding stresses. As for bending
momeuts, their positive values shall be scaled off below Lhe z-axis
and the negative ones above it; thus, bending moment diagrams
will always appear on the side of the extended fibres of the beam.*

+

*In cerlain treatises on the strength of materials, positive bending moments
are plotted on the side of compressed fibres.
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The sign of the shearing force can be also ascertained with the aid
of the bending moment diagram, using the following rule: The shear
is positive in any cross section where the superposition of the azis of the
element with the tangent to the bending moment diagram Trequires
a clockwise rotation of the former, provided the angle of rotation does
not exceed 90°

Left-end
M o s
f N N 4
&I :—mdfac%
iégﬁf. partion J a a
Fig. 1.2 Fig. 2.2

Assume, for example, that it is required to find the sign of the
shearing force at cross section z of a beam, whose bending moment
diagram is represented in Fig. 2.2, In this case, the axis of the beam
should be rotated clockwise in order to bring it in coincidence with
the tangent to the bending moment diagram (the direction of rotation
is indicated by a dotted arrow), hence, the shearing force is positive.
However, in cross sections close to the right-hand extremity of the
beam the shear will be negative, for the superposition of the axis
with the tangent would require counterclockwise rotation (see
Fig. 2.2}

The shear Q@ in any cross section is equal in amount and sign io the
sum of projections of all the external forces acting to the left of this cross
section on a normal to the beam axis passing through this cross section,
or to the sum of projections of all the external forces to the right of the
cross section on the same nermal but taken with an opposite sign

Q=3YV=-—ZY (1.2)
L R

the projections being reckoned positive when they are directed
upwards.

The bending moment M in any cross section is equal in amount
and sign to the sum of moments about the z-aris (this axis passing
through the centroid of the cross section normally to the plane of the
beam) of all the external forces acting lo the left of the cross section
or to the sum of moments of all the external forces acting tn the right
of this section but taken with an opposite sign

M=3M,= —3M* (2.2)
L R

+
*The index z may be omitted.
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the moments being reckoned positive when they tend lo rotate
the cross section clockwise,

The normal force N is equal in amount and sign lo the sum of pro-
jections of all the external forces to the left of the cross seclion under
consideration on the beam axis, or to the sum of projections (on the
sume axis) of all the external forces o the right of this svetion bul taken
with an opposite sign

N=IX- —3X (3.2)

these projections being reckoned posilive when they are direcled
from right to left.

There is a set of relations between the M and Q diagrams and the
loading of the beam, these relations facilitating the plotting of
these curves and permitting their verificalion. These relalions are
of great importance for they apply not only to beams bul equally
to bents and frames of various types.

The basic¢ relalion can be represented as follows

dM
Q=g (4.2)

in other words, ihe shear is equal Lo the first derivalive of the bend-
ing moment in terms ol dz (Lheorem of Zhuravsky), the sign conven-
tion as set out above remains in [oree [or M and @, while the positive
direction of the x-axiz is from lefl to right.

Muoreover, there is equally Lhe relalion

dQ
g == (5.2)

which means that the intensity of the distributed load applied nor-
mally 1o the beam axis is equal to the first derivative of the shear,
the distributed load being reckoned positive when it is directed
upwards.

The following can be easily dedueted from these two relations®.

1. Negative shears correspond to decreasing bending moment
values, indicated by an increase ot the bonding moment diagram
ordinates from left to right. Similarly decreasing hending moment
diagram ordinales will signify that the coreesponding shears are
positive.

*

*it is deemed unnecesszary tu dwell in detail on the corresponding demonstra-
Lions.

J-B04
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2, The steeper the slope of the tangent to the bending moment
diagram, the greater in absolute value is the shear, for the latter
is numerically equal to the natural tangent of the angle formed
by the tangent to the diagram and the beam axis.

3. The bending moment will pass through a maximum or a mini-
mum at those eross seetions where the shear is nil.

4. The hending moment diagram bhelween two concenlrated
loads (no distributed loads intervening) forms a straight line,
generally inclined, while that of the shear reduces to .a hori-
zontal.

5. A conic parabola for bending moment diagram will correspond
to a uniformby distributed load, the shear diagram becoming in
that case an inclined straight line,

6. The convexity of the bending moment diagram is always turned
in the direction of the distributed loads.

7. Concentrated Ioads cause breaks in the direction of the bending
moment diagram and jumps in the shear diagram. The rises and falls
in the latter case are equal in amount and direction to the magnitude
of the concentrated loads as met when moving from left to right
along the beam.

8. The change in the magnitude of the bending moment occurring
over a certain portion of the beam length is equal to the area of
the shear diagram over the same heam length provided no external
moments are applied thereto.

9. The change in the magnitude ol the shear occurring ever a cer-
tain porlion of the beam length is equal to the area of the distributed
load diagram over the same beam length,

In the present chapter we shall study the methods of stress compu-
tation in cross secltions of simply supported beams carrying moving
loads and in those of multispan cantilever beams subjected hoth
to fixed and moving loads. Moving loads are frequently encountered
in the computation of bridges, overhead cranes and other enginecring
structures. An example of a moving load is furnished by a train
travelling along a railway bridge, or an overhead crane moving
along crane tracks, ete.

Stresses and strains in the different elements of a structure depend
on the position of the moving load. Tn order to determine the maxi-
mum design stresses, it is always necessary to know the most unfa-
vourable position of the load or loads for the element concerned.
Thus, when designing the cross section of any truss member, the
moving load must be so placed as to cause the greatesl possible stress
in this particular member. This loading position is usually referred
to as the most unfavourable or dangerous. A distinct most unfavoura-
ble load position can be always lound for each truss member, every
cross section of a beam, ete.
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It should be noted that this remains true not only lor stresses
but also for reactions at Lhe supports, for deflections and so forth.
The design of structures subjected to moving loads is greally
facilitated by the possibility of applying the principle of superposi-
tion. This means Lhat the internal forees, {ibre stresses and strains

-

Fig. 3.2

caused in a structure by different loads will add to one another.
It follows that if some particular load increases a certain number
of times, the stresses and strains set up by this Joad will increase
in the same ratio.

It also follows that if two different groups of loads are applied
to a structure, the total stress in each member will be eqgual to the
sum of stresses caused scparately by each of the two groups.*

We shall start with our analysis of the cffect of moving loads
with the simplest case possible—that of a single vertical unit load
£ moving along a simply supported heam (Fig. 3.2). Lot us investi-
gate the changes sustained by each of the parameters under consid-
eration (rcaction at the support, internal force in a truss member,
bending moment in a particular cross section of a beam, the beam’s
deflection at a certain point, etc.) when the load P =1 travels
along the structure. We shall represent graphically the alterations
of the parameter chosen in terms of the load position.

The diagram which depicts the jluctuation of some particular param-
eter (say, the bending moment in a cross section of a beam) when
the load P = 1 travels along the structure is termed the influence line
for the said parameter.**

Influence lines should never be confounded with the stress
diagrams. In fact, the ordinates to the latler represent Lhe varia-
tion of the parameter under consideration (say, of the bending

+

* The principle of superposition applies not only to the case of concentrated
loads bnt equally to distributed loads, bending moments, temperature stresses,
etc. [t dees not apply in the case of buckling with bending, in all cases when
the material dees not follow Hooke's law and in some other cases.

*#* Influence lines represcnting the variations of either stresses or strains can
slso be plotted for unit hending moments, external forces normal to the cross
scetion and other types of loads moving along the structure.

A
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moment) in all cross sections of the beam for one definite position
of the load, whereas those of the influence line indicate the variation
of a parameter (say, of the same bending moment) in one particular

cross section when Lthe load wnity travels along the whole length of
the heam.

2.2, REACTION INFLUENCE LINES FOR SIMPLY SUPPORTED
BEAMS WITH OR WITHOUT OVERHANG

Let us assume that a unit Joad £ =1 moves along a simply
supported beam A8 (Fig. 4.2a) and let us designate by x the dis-
tance from the load Lo the right-hand snpport. This distance will

{a) AT

T

(.'5'.3“"-I
el i,
Infituence ling far 8 ;
‘c) [ ®
< il ” |H”| T

Fig, 1.2

vary [from zero, when the load is direclly over this support, to !
when il is over the left-hand one. In order to determine the reaction
A in terms of 2z, we can wrile the equation of equilibrium of moments
ol all the external forces about the right-hand support.

EMy=Al—Pz=1)
whence

However. since =1, then

This equalion gives us the law governing the variation of the reaclion

A as the load P =1 ghifts from one point to another.
Plotling out the relation just established we obtain the influence

line lor the reaction A at the left-hand support. Since this equation
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is ol Lhe first degree in terms of @, the influence line will he recli-
lincar (Fig. 4.20) and

for ¥-=90 A= 0

for o={ A== 1

The ordinates to the influence line for the reaction are dimen-
sionless, for both = and I are expressed in units of length.

Some scale must be selected in order to plot the influence line.
If, for instance, we adopl a seale of 1 in 1 cm, we shall lay off 1 cm
over Lhe left-hand support where 4 = 1. The ordinate to the influ-
ence line for the reaclion at 4 measured a distance = from the right-

liaud support will equal = . This ordinate will be numerically equal
pI :

1o the reaction 4 when Lhe distance to the load £ = 1 as measured
from the right-hand support equals z. In other words, the ordinale
to the influence line for the reaction A at a given cross section represents
to scale the value of the said reaction al the instant when the unil load
P is placed directly over this crass seetion. Accordingly, the magnitude
of the reaction A corresponding to a given position of the load P =1
can be oblained by simply secaling off the ordinate to the influence
line at the point of load application.

When the load actually applied to the beam amounts to Py, the
reaclion 4 will be obtained by multiplying the ovdinate Lo Lhe influ-
ence line at the point of loading (this ordinale, as already mentioned,
repregenting the reaction A corresponding lo a unmit load) by Lhe
magnilude of force ;. Should a number of concentrated vertical
loads act on the beam simultancously, the total reaction A will
be found as the sum of scparate reaclions due to each of Lhose dil-
ferent forces,

Lel us now proceed with the construction of the influence line
for reaction B. Fer this purpose we may equate to zero the sum of
all the momenls of external [orces about the hinge centre at A:

M = —BI+P(l—ux)=0
leading Lo

3 Pil—x) Agl—ay Il—=
B= ; =

This equation represents the variation of reaction B in leems
of the position of load unity P. In order Lo trace the influence
line, let us put
i

=10 then B - += 1
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and

=t then B=ITl_p

Fig. 4.2¢ represents the influence line for the reaction B. The
ordinates to this line are again dimensionless and the scale shonld
be Lhe same as for reaction A. These ordinates ropresent the amount
of reaction & when a unit load is applied at the cross seetion corre-
sponding to the given ordinate. Hence we can determine this réaction
for a load unity by simply measuring the ordinates to the influcnce

line.
A s }._x_..hs
fat

The significance of influence lines represented in Fig. 4.26 and
¢ is greatly enhanced by the fact that they permit immediate deler-
minalion of the load position causing Lhe greatest reactions. Thus,
it is readily secn that the reaction 4 will reach its maximum when
load Py will stand directly over the left-hand support. The same is
true for reaction B when the load Py is applied to the right-hand
support, i.e., when it eoincides with the maximum ordinate to the
influence line.

It should be kept in mind, however, Lhat each influence Line will
depict solely the variations of the parameter for which it has been plotted.
Thus the influence lines for reactions 4 and B will convey informa-
tion on these reactions respectively.

Lel us consider now the influence lines for the reactions of a beam
cantilevering over one of its supports as shown in Fig. 5.2a. The
influence line for reaction 4 will be derived from eguation

EMy=Al—P2-—-0
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whence (with P=1)

This equation is identical with that obtained before for a simply
supported beam, with the sole difference that in the latter equation
z can vary from 0 to I while in the present case it can do so from
O to (I + k) where k is the length of the overhang. The ordinates
to the influence line at pertinent poinls are

tor z=10 A=0
forz=1 A.-_-%:i
forz=itk A=tEo gt

We can now proceed with the construction of the influence
line for reaction 4 by simply laying off the ordinates obtained
(Fig. 5.20). Tt should be noled that there is no real necessily to
determine all the three ordinates, as the influence line is rectilinear
and in this case the knowledge of only two ordinate values (say,
at x =0 and at z = 1) is sufficient.

A comparison of an influence line for a beam with overhang with
the influence line represented in Fig. 4.2 ghows that the first one
can be easily obtained by a simple extension of the latter until its
intersection with the vertical passing through the end of the over-
hang.

The following cqualion will be used for the construclion of the
influence line for reaction I?

IMy=—BlLP{l—z)=0
whenece

_Pil—m _i(l—z)  l—zx
B = ] = TR |

Comparing this equation with the one relating to a simply supported
beam we [ind that they are exactly the same, the only difference
residing in the limits between which = may vary.

Let us now determine the ordinate values of this inlluence line

forz=0 =—=1
forx=1 B=""=0(
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Plotting these ordinates as in Fig. 5.2¢ we obtain the influence
line for reaction B. As in the case of reaction A, the computation
of the ordinate for z = I -~ & proves superfluous.

The influence line for the reaction B of & beam with overhang can
also be derived from the one pertaining 10 a simple beam by extend-
ing the line until its intersection with the vertical drawn through
the extremity of the overhang.

Fig. 6.2

The lact that some of the ordinates to the infiuence lines are Lhis
Ltme negative indicates that when the load point coincides with
Lhese negative ordinates, the reaction B itself is also negalive or,
in other words, direcled downwards,

The same procedure as described above should be followed for
the construction of inlluence lines for the reactions of a heam canti-
levering over ils right-hand support,

Fig. 6.2 represents the influence lines for the reaclions of a beam
with two overhangs. The reader ig invited (o write 1he eorresponding
equations on his own.

3.2. BENDING MOMENT AND SHEAR INFLUENGE LINES FOR
SIMPLY SUPPORTED BEAMS WITH OR WETIHQUT
OVERHANG

Let us now analyze the construction of influence lines for bending
moments and shearing forces induced by a moving load in a simply
supporled beam. We shall begin our investigation by examining
the influence line for the bending moment in cross section 7 located
a distance @ from Lhe left-hand support and a distance & from the
righi-hand one (Fig. 7.24). The bending moment in this scction
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is equal to the algebraic sum of moments of the outer forces to the
left of this section about its centroid or to the sum of moments of
foreces Lo its right bul taken

wilh an opposile sign {sce expres- A 1 P X 8
sion (2.2)]. l
ion (2.2)] @ I
b ’

As long as the load is situated
Hr e,

to the right of section f (Fig. 7.2a),

; :
. .
i.e., as long as z < b, the only : L& i
external force to the lelt is the 20 %, x
e . . : At Ps f B
reaction A and therelore the (5) 1 |
bending moment A7, in seclion / :% -
is equal to Aa. i Bes, :
Accordingly Lhe influcnce line | T oy, |
for this bending moment wmay (c) | r : !
he derived from the influence L)
s ; ; {1 I
Jine for reaction A by multi- E\m—}% |
plying its ordinates by «. (q) el |
Substituting for A its value | I |
found in Art. 2.2 we obtain ! { #T
| | -
z -
My=—Ta ! V jafiyence tine

The graphical representation of

this equation requires the knowl-

edge of two distinet values of M; (¢)
forx=10 MI =1{

i
|
forc=b M, _as :

. ‘ ()
Using these values we can

|

3 : |

now trace Lhe righi-hand porlion 2o | Influence Line for |
|

I

I
of the influence line for A, ol DT/ ;}f_égﬂr
(Fig. 7.2¢). Tts ordinates will W@WWH%‘”L'I

furnish the values of the bend- (g) T
ing moment in section [ when Wﬁhh _:l

the unit toad is situated to the
right of this section, i.e., when
T b. Fig. 7.2

When Lhe load passes to the
left of section J, i.e., when & > b (Fig. 7.28) it becomes more
convenient to use the equations pertaining to the right-hand por-
tion of the beam.

Tn that case the bending momeunt M, = -~ Bb for, although
the moment of reaction B about the centroid of section [ acts coun-
terclockwise and is therefore negative, the bending moment caused
by it in the beam remains posilive [see expregsion (2.2)).
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Substituting the value of £ [see Art. (2.2)] we obtain

M="75p
for a graphical representation of this expression, we shall once
again find two values of M,
—!
for z=-0 M‘.,:_i_.!-_‘.b:_'%’_

forx=1{ :Wf=£—?—lb={)

These data permit the construction of the left-hand porlion of
the influencoe line for M; (Fig. 7.2d). Its ordinates will furnish
the bending moment values for section 7 when load unity P is to
the left of the section, i.e., when z varies from b to L*

It the left- and the right-hand portions of the influence line
(FMig. 7.2c and d) are now brought together (Fig. 7.2¢) they will
intersect under cross section I. Should these lines be extended until
they meel with the verticals passing through the supports they would
intercept thereon the following ordinates: over the lefi-hand one
an ordinate equal to a, and over the right-hand one an ordinate equal
to b (Fig. 7.2¢). This can be easily proved by substituting 0 and
i for z in the expressions of the right- and lefi-land portions of the
inliucnce line respectively. Therefore, in practice the M, influence
line is frequently constructed in the following way: ordinate a is
plutted over the left-hand support and ordinate b over the right-hand
one, @ and b being respectively the disltances from section [ to these
two supports. This being done two straight lines connecting each of
these ordinates with the zero ordinate point at the base of the other are
traced, the two lines intersecting exaclly under cross section 7.

The above procedure may be simplified as follows: first drew the
line corresponding to any of the two portions of the influence line (say,
lo the right-hand one), and then connect its point of intersection with
the vertical passing through the section concerned with the zero point
at the other support (in our case at the left-hand one).

I'he ordinates to the bending moment iniiuence line are expressed
in units of length. This for example may be seen from the fact Lhat
the ordinale over the left support is taken equal to the length .
Hence the same scale may be adopted for both the beam length
and the bending moment influence line.

'S

*Ordinates of positive bending moments are divected npwards. Accordingly,
when the bending moment influence tine is above the beam axis the lower fibres
«of the beam are extended.
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Any ordinate to the influence line for M, will furnish the value of
the bending moment in section I when the unit load is situated over
this particular ordinate. Accordingly the determination of the bending
moment in section I for a given position of load P = 1 requires solely
the measurement of the influence line ordinate at the load point.

It should be borne in mind that the influence line for M, cxpresses
the variation of the bending moment only in section [. If it were
required to find the law governing the variation of the bending
moment in some other section, a new influence line corresponding
to that particular secltion should be constructed.

Let us now examine the construction of the shear influence line
for section I. As already stated, the shear in any section is equal
to the algebraic sum of vertical projections of all external forces
acting to the left of the section concerned, or to the same sum taken
with the opposile sign and pertaining to the external forces to the
right of this seclion [sce expression {(1.2)].

Examining two unit load positions, one when the load is Lo the
right of section I and the other when it is to the left of it, we
find:

(1) In the fiest case, i.e., when & < b (see Fig. 7.2a) the equi-
librium equation relative to the left-band portion of the beam Ffur-
nishes

Graphical representation of this relation requires the compu-
tation of Lwo distinet values ol @,

forz=0 ;=0

fOl‘;I:l[l QI':"?_

Using these values we can construct Lhe right-hand portion of
the Qp influence line (Fig. 7.2f), its ordinates giving Lhe values
of the shear in section / when the unit load is to Lhe right of vhis
section, i.e., when 2 < b,

{2) 1n the second case, i.e., when z 2> b (Fig. 7.26) the same con-
siderations as above give @; = — B [although reaction B is directed
upwards and is therefore positive, it must he taken with the minus
sign, in accordance with expression (1.2)}L
Since

l—x
B= {

—x
!

i
Q; becomes —
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Computing two distinct values of Q;

forx=06 Q;L—i:f-b—L——';—
forz=l Q=—171_0

and plotling them as in Fig.7.2f we oblain the left-hand  portion
of the shear influence line (as the ovdinates are negative they are
plotted downwards).

Had we extended the influence lines oblained until their inter-
section wilh the verticals passing through (he supports the corres-
ponding intercepls would equal: at the left support 41, and al the
vight one —1. This can be easily proved by substituting z = 0
and 2 = { in the equations relative 1o the right-hand and to the loft-
hand portions of the influence line, respectively.

1. follows that the shear influence Tine can be eonstructed as indi-
caled 1n Fig, 7.2g by plotting the ordinates -1 (upwards) and —1
(downwards) along the verticals passing through the left-hand and
the right-hand supports respectively and by joining each of the {wo
points so obtained with the base point at the other support. It is obvious
that these lwo lines will be parallel. This being done, a vertical
is traced fhrough the scction under consideration as in Fig. 7.2g.

The ordinates of the shear inflyence lines are dimensionless, hence
their scale may be the same as in the case of abutment reaclion
influence linoes.

Ordinates to the sheur inflitence lines represent the shear values in
seclion I arising from unit load P acting in the section corresponding
to the said ordinate. Therefore, the amount of ihe shearing forces in
section 1 for a given position of the unit load P can be oblained by sumply
measuring the ordinate of the shear influence line at the load point.

If the ordinate at load point is negative. the shear in the section
will also be negalive for this position of the load. The ordinates
Lo the Q; influence line represent the shear variation only in section
f. Shonld it be required to find the shear variation in some other
section, a pew influence line would have to be constructed.

Let us now investigate bending moment and shear influence lines
for a heam cantilevering over the left support, as shown in Fig. 8,2a.

Construction of the influence Jines for a cross seetion located be-
Lween the supports 4 and 2 remains exactly the same as in the pre-
vious case, i.¢., as in the case of a simply supported bheam with
no overhang. Two load points—one to the right of the section and
one Lo tls left should be cowsidered, the bending moments and the
shears being expressed in both cases through the reactions A and 5.

Since the equations of the abutment reaction influence lines are
the same for a simply supported beam with or without overhang
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(see Art. 2.2), it is obvious that the corresponding equations for
the bending moment and shear will also be the same for both ypes
of heams, with the sole difference thal z, which varied in the lirst
case from 0 1o I, will now vary from 0 to ({ - k).

This will alfect Lhe construction of shear and bending moment
influence lines in the same way as those for the reactions, in other

13 X
» n Pt "' 7 5
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Fig, 8.2

words, these lines will simply have to be extended to the left extrem-
ity of the overhang (Fig. 8.2¢ and d). The rcader is once again
invited to check himself analytically the influence lines so obtained.

Now let us see what happens in section I7 situated a distance
¢ from the left end of the overhang (Fig. 8.2a). Once again we must
consider two positions of the unit lond £,

(1) The load point is to the right of section IT (I'ig. 8.24). In this
case Lhere are no external forees to the left of section T and therefore
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the bending moment in this section is nil. The appropriate portion
of the influgnce line is represeunted in Fig. 8.2¢ by a horizontal line
coinciding with the z-axis, as all the ordinates are nil along the
whole stretch from section I/ to the support at A.

(2) The load is to the left of section IT (Fig. 8.2b). In this casc
there is only one force to the left of the section, hence the bending
moment in section f7 will be

My=—12

where z; is the distance from the load point to section 11, This
distance may vary from O (when the Joad point coincides with the
section concerned) to ¢ (when the load reaches the end of the over-
haug).

For these two extreme values of z, we have, respectively, M,, = (¢
and M, = — 1.¢. This portion of the influence line is represented
in I"ig. 8.2¢, negative ordinates being plotted downwards. Thus,
Fig. 8.2¢ represenis the bending moment influence line for sectiom
IT {ar any position of the load.

Let us proceed with the construction of the shear @, influence
line for scction [f.

(1) As long as the load remains to the right of the section there arce
no forees whatsoever to its left and therefore Q;; = 0. The corre-
sponding part of the influence line (from section /7 to the support
at B) is represented in Fig. 8.2/ by a horizontal sireteh coinciding
with the z-axis.

(2) When the unit load is to the left of section IT, the shear @, =
= — 1 which means that the shear remains constant irrespective
of the position of the load point, provided it lies 1o the left of the
section. This portion of the influence line is represented in Fig. 8.27
by a line parallel to the z-axis, negative shears being plotted down-
wards, Fig. 8.2f gives the shear iniluence line for section 77 in its
entirety.

As will be noticed, the bending moment and shear influence lines
for sections selected within the overhang differ very substantially
from those relating to sections situated between the supports.

In Fig. 9.2 we have represented the bending moment influence
lines for a number of sections of a beam cantilevering over both
supports, seclions 7/ and VI, coinciding with tho left-hand and
right-hand supports, respectively. The shear influence lines for the
same sections are presented in Fig. 10.2, Two scetions correspond
to each support, sections Ifa and V7a being immediately Lo the
left thereof, and sections J/b and V/b immediately to the right.
1t will be noted that shear influence lines for sections Ifa and 77/b
as well as for sections VIa and VIb are quite different.



P IH

!V

¥

vi_vir

=t i
i Inf{uenc‘eiane for {}'{.

|| . I [ i i-.. P I la Hb !.’f IV ¥V Vel Vi
4 i % : et r :
e -] % 1 % i " 1 ] Ii w%? | ] 7;_ |
i STl BT} oo . |k | Iy ! SR e
A= | . il
|
i

1
,_}W Jn,'fiuemlce Line for My |
i |
: | |

i

l!ﬂfi:;fmce lie for ,fif,,

a’nﬂugnm Line for My

|
I
|
i
|

Unﬂuence Emel for :
M,

| T

1
E [!ﬂflﬁ’&"ﬁ'& taefor g, |
!
|

|
|
|
P | "
.| T : -
1 | I | !
Lo
| I . ' . =
&t Influence Lune for Mymy | "{ ! I!fﬂf.{mcelme for Q”ﬁ“ ?Hh !“ :
: : S
\Qﬂ :t lL lfﬂffufﬁﬁeﬁﬂefﬂf’&'w;: H-ET
Fig. 9.2 Fig. 10.2
T il
ta) ’_ i '
. F
J-l_ ’ "‘I‘ fil |
I I
1 :
= j’ '
2 :

™ Influrnre -!» e :
I

et |

I
1 fafluence Low frr Moy

Viaftunnee dioe for @

WW\HHWWME

.

Fig. 11,2



48 Heams

Probtem. [t s required Lo coustruct the bending moment and shear influence
lines lor seclivn /m of a beam represented in Fig. 11.2q, the unit load P travelling
from r to s.

Nolutton. First constroct the influence line for reaction 4. Bewm rs being
rigidly connected to heamn AB by means of the stanchion pg, the reaction A
will equal (see Fig. 11.28)

[—=z

The bending moment in section m for any posilion of the wnil load on
heam rs will equal

E

Accordingly, the bending moment influence line for section m will be geomel-
vically similar to that ol the left-hand reaction, the latter’'s ordinate values
heing multiplied by o constant {actor equal

Ma 1o ¢. This influence line is represented in

=
P11t x e Fig. 11.2c.
¥ I 3 The shear influence line will bhe ob-
N

- Lained through the saaie proceduro and will
£ differ in no respect from  that for reac-

(a) T

Influence Lime for A A tion A
(6) l ﬁ i 4.2. INFLUENCE LINES FOR
| SIMPLYE CANTILEVER BEAMS
i
I ! Lt us first find the influence line
w) Influence line ! for reaclion A4 al the support
for My (Fig. 12.2¢). The equilibrium equa-
] T | tion for the verlical projections of
lI the external forces gives
I WV el A =D
(0}~ l' hence
< I A=
- s
) ""’ﬂ‘lfe"""‘f tine | Accordingly. for any position of
AV Inf luence Line fo: a2, Lthe point ol applicalion of the unit
: load P the reaction remains equal
(&) "‘I ‘ H to 1. Adopling an appropriate scale
as explained in Art. 2.2, we can trace
Fig. 12.2 the influence line shown in Fig. 12.20.

In ovder Lo find the bending moment
influence line for section [ located a distance ¢ from the left-hand
extremily of the beam, we shall proceed in Lhe sanme way as in the
case of a beam with overhang represented in Fig. 8.2, i.c.,

(1) when the load is to the right of section / (solid line in
Fig. 12.2a)
M;=0
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(2) when the load is to the left of section 7 (dash line in
Fig. 12.2a)

M.I = —'1-£Ci= — £y
where z, is the distance from load point to seclion I}

fora; =0 M;=0

forzy=¢ M;= —c¢

The corresponding influence line is represented in Fig. 12.2c.
1t is quite similar to the bending moment influenee line for a section
within the cantilevering portion of a beam with an overhang (sec
Fig. 8.2e).

If section [ is chosen directly at the support A (¢ being equal
to 1), we shall obtain the influence Jine of the fixed-end moment
M ,. This line is shown in Fig. 12.2d.

For obtaining the shear influence line we shall proceed as deseribed
in the previous article,

(1) When the unit load is 1o the right of section I' the shear is nil,
no forces existing to the left of this section.

(2) When the unit load is to the Jeft of section I the shear Q=
= 1, which means that the ordinates to the influence line will
remain constant and equal to —1 over the whole streich from section
I 10 the Jeft extremity of the beam.

The shear influence line Q; is represented in Fig. 12.2e. 1t has
exactly the same shape as the one for section I7 in the cantilevering
part of the beam with overhang shown in Fig. 8.21.

5.2. INFLUENCE LINES IN CASES OF INDIRECT LOAD
APPLICATION

Thus far we have been considering cases when the external loads
were applied directly to the beams. In practice, especially in bridge
construction, the loads are usnally transmitted to the main beam
or girder by secondary or floor beams, which in their turn support
auziliary beams or stringers (Fig. 13.2a). The stringers are single-
span simply supported beams, each stringer span being called a panel
and each point where a floor beam bears on a girder—a parel point.

When the load js applied to ihe stringer somewhere between panel
points m and n, it will be transmitted to the girder only at these two
points. This mode of transmission will have no ecifect on the girder
abutment reactions as will be readily seen from the equilibrium equa-
tion of moments about any one of the supports. Hence the influence
lines for the reactions will be exactly the same as if the load were
applied directly to the girder (Fig. 13.26 and c¢).

The influcnce line for the bending moment will also remain unal-
tered for any cross section I lying within the panel mn, as long as
4—-853
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the load point is either to the left of m or to the right of n. In other

words, as long as the load is situated oulside the panel containing

the section under consideration, the bending moment influenece line

may be drawn in the same way as in the case of direct load applica-

tion. This is easily confirmed by the corresponding cxpressions of

the bending moments. Thus, in section J situated a distance a from

the leit support M; = Aa when the load point is between n and

s B and M; = B (Il — a) when

JP i R Strenger the load point is hetween m

A N _L}__f__ |3 and A. These two expressions

e T ST T3 coincide exactly with Lhose

T i -.} obtained in Art. 3.2 for ordi-

i w1 Ve, nary beams, and therefore

I ot IS ticrce Loe having constructed the bend-

\ for A ing moment influence line

T for section I as explained
I

above, we may shade the arcas

tnftuence tine' — bounded by portions Am and
c) o ford *| Bn of this line indicating thus
i that these portions are definite

: :Infmence lire (Fig- 13-2'53)-
i or My However, when the load is
~ . A Lonnecting Line within the panel mn, its eifect
will be transmitted to the gird-
er at panel points m and n,
its components R, and R,
shown in dash lines in Fig.
14.2a, being equal to the cor-
responding rcactions of the
stringer beam.

In order to find the shape
of the influence line when the
load is within the panel con-
taining the section, let us find
the value of any function S; set up in section [ by a unit load
(P = 1) sitnated as stated above. Assuming that y, and y, are
the ordinates to the influence line at the corresponding panel
points (Fig. 14.2b) and using the method of superposition we can
write the following equation

|
|
T )

|

|
|
|
|
|
I
t

o
| Ya
|{nfluence Line
for @

SNl
Lonnecting line

Fig. 13,2

SI = Epy =Rmym —J,-- Rnyn
where

Pz 1.2 z
Rm=_d._.= =
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and
Pd—z) _ 1(d—2) _ d—z

Bn == i p)

where d = panel length
z = distance from the load point to the right-hand panel
point.
Substituting the values of R, and R, in the first equation, we
obtain

d—z
S;= % Ym -+ —a Un
Accordingly, when the load is situated between the panel points

m and n, the flunction &; varies linearly with z from S; = y, for
z=0¢tp 8; =y for z = d.

|;Q,.», p |»‘?n
| z
" l Y

(ar [ i T T j
,,{1@,’_ mi‘L*!:n --'-lf

: 1 |

o M
| Fig. 14.2 )

Hence the influence line for such a function is a straight line
connecting the panel point ordinates y, and y,. It follows that
in the case of the influence line for bending moment M, we must
simply connect by a straight line the ordinates at panel points
m and n determined previously, obtaining thus the influence line
represented in Fig. 13.2d.

The copstruction of the shear influence line for section I is quite
similar. From 4 to m and from n te B the ordinates to this line will
be exactly the same as if the load were applied directly to the girder.
Within the panel mn which contains the cross section I the influence
line will be represented by a straight line connecting the ordinates
at pancl points (Fig. 13.2¢).

Thus, when the load is applied through an intermediate beam
the inflluence line may be constructed in the following sequence:

(1) first draw the line as though the load were applied directly
to the main beam or girder;

4
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(2) this being done, find the intersection of the line with the ordi-
nates passing through the panel points pertaining to the panel which
contains the cross section under consideration and connect these
intersection points by a straight line.

Influence line for My

influence line for @

Fig. 15.2

Fig. 15.2 represents the influence line for 7 and @ corresponding
to sections I and I7 of a beam with an overhang.

Influence lines for the reactions have been omitted as thoy do not
differ in any respect from those of a beam subjected to direct loading.

6.2. DETERMINATION OF FORCES AND MOMENTS WITH THEL
AID OF INFLUENCE LINES

The construction of influence lines having been discussed in delail
in the previous articles of this chapter, lel us now examine the
determination of forces and momeénts with the use of these lines (they
can also be wused for the determination of strains, deflections, and
other deformations).

Two cases will be considered:

(a) concentrated loads and

(b} uniform loads.

Case of concentrated loads. As already explained in Art. 2.2, the
determination of any function caused by a load P, requires the
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measurement of the ordinate to the influence line for this function
and its multiplication by the magnitude of load. If the structure
carries several loads at a time (Fig. 16.2qa), the full value of the
function in a section will be obtained by measuring the ordinate
under each load, these orvdinates being then multiplied by the mag-
nitude of the corresponding loads and the producis summed up.
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Fig. 16.2

Thus, in order to obtain the bending moment in section I (the
influence line for M is represented in Fig. 16.2b) we must multiply
the lond P, by the ordinate &, (since this ordinate is negative, the
produet Py will also be negative), the load P, by the ordinate 2,
and the load 7; by the ordinate k;. The bending moment resulting
from the combined action of loads P, P, and P; will equal

M, = SPh=—Pih, -+ Pohg+ Pihs

The ordinates to the bending moment influence line being meas-
ured in length units, say, metres, if the loads are measured in tons,
the product Ph representing the bending moment will be expressed
in tons multiplied by metres.

A similar procedure may be used for the determination of the
shearing force Q; in section I (the influence line for @ is represented

in Fig. 16.2¢)

Q= Phy— Py + Pshy
where k), b, and h; arc the ordinates Lo the shear influence line
under the loads P,, P, and P;.
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The ordinates to the shear influence line are dimensionless and
therefore the product Ph’ gwmg the shear value will be expressed
in the same units as the load P.

The support reactions can be found in a similar way, using the
relevant influence lines.

Thus, in order to compute any function (abutment reaction, bending
moment, shear, internal force in any truss member, elc.) arising under
the action of several concentrated loads the ordinates to the corresponding

Fig. 17.2

influence line must be measured at all the load points, they must be
then multiplied by the respective loads, the products so obtained being
finally summed up.

Problem. Using the influence line for the bending moment M represented
in Fig. 17.2b determine the value of this moment in section 7 of the beam shown
in Fig. his beam carries three concentrated loads the amounts of which
are also indicated in the same figure. Ordinate values at load points are shown
on the influence line, but they can also be scaled off the drawing or calculated.

Solution. The bending moment in section I equals

My=—Pihi+ Poho+ Pghg= —4x 0.54-8 X 1.0+10X 1.0=16.0 ton-metres

‘The first term of the right-hand part of the equation is preceded by a minus
sign, the ordinate A; being negative.

Case of uniform loads. The sequence of operations is illustrated
by the following example: a uniform load of intensity g is distributed
along a certain length of a beam represented in Fig. 18.2¢ and it
is required to determine the bending moment in section 7 (the influ-
ence line for A/, is shown in Fig. 18.2b). Let us replace the uniform
load acting along an infinitely small length dz by a concentrated
load gdz (Fig. 18.2a). The moment in section I due to thisTload will
amount to g dzh, where h, is the influence line ordinate under the
load. Proceeding in the same way we can replace the whole load
distributed along the beam by an infinitely great number of concen-
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trated loads gdz and the bending moment in section I due to all
of these loads will be then obtained by a summation of all the prod-
ucts gdzh, or

a @
M,:Squh,:qgh,dx
c c
the load intensity ¢ remaining constant.
The integration limits ¢ and d indicate that the summation must
be carried over the whole length of the beam section, along which
the load is nhstnhuted

The term S hy dz represents the area bounded by the influence

line, the ordmates corresponding to the limits of loading and the
z-axis (this area being shaded vertically in Fig. 18.2b) for h.dz

qgeix

{a)

; Lr
§
? iL
vE

Fig. 18.2

is an elementary area shaded with slanting lines in the same figure.
If we denote the whole area by o the bending moment in section
I will be

M;=qo

Thus, in order to determine the amount of any function arising in
a given section as a result of the application of a uniform load, the
intensity of this load must be multiplied by the area bounded by the
influence line, the z-axis and the ordinates passing through the load
Limits.

When the influence line within the load limits changes sign the
areas will be taken with their signs. Thus, the total shear in section
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I (the corresponding influence line is drawn in Fig. 18.2¢) will be
obtained by summing up the areas @, and ®,
Qr=g(o;+ o) -
@y being reckoned negative.
Problem 1. Assume that a simply supported beam is uniformly loaded over
the whole of its length with an intensity ¢ (Fig. 19.2a). It is required to find the

bending moment and the shear in the middle of the beam and the reaction at
the left support using the influence lines represented in Fig. 19.2b, c and d.

(a)

A

g

1's 9
IR RN R RN AR TR R ARARN]
, 4 ] 7

'_;ﬂJ
\nfluence Line

i
I
|
I
|
I
I

Fig. 19.2

Solution. As this load is spread over the whole length of the beam the areas
bounded by the influence lines must be calculated for the entire span. B
Determination of reaction A. The area bounded by the influence line being
1 !
e
the abutment reaction equals

3
A=qoy=1-

Determination of the bending moment My. The area bounded by the infiu-
ence line being

. 8
0=
the bending moment will equal
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Determination of the shear Qy. The influence line consists of two portions
bounding areas equal in size but opposite in sign

Therefore -y
Qr=g(0s+0)=¢ ('?"LT) =0
Problem 2. Determine with the aid of influence lines the bending moment

and the shoar in socion [ o a simply supported beam with an overhang loaded
as indicated in Fig. 20.

q=2t/m

(a)

21, sm
2z ) 10m
~Mnfluence tine fﬂr Moy

Aﬂllll iy

i
|
lInfzuence wine for @y |
1
|

Fig. 20.2

Solution. Start by dmwmg ﬂm influence lines for the bending moment and'
shear in section I (Fig. 20.26 and c).
Determination of the bmdmg moment My. The ordinate hy to the bending
moment influence line under the concentrated load P is equal to —1.6 m an
the area ; under the influence line of the uniformly loaded slretch totals

4 X8X1.6=6.4m2

™
Therefore the required bending moment will amount to
My=—Phy+qoy=—3%1.64+2X6.4=8.0 ton-metres
Determination of the shear Qr. The ordinate hy to the influence line for
Oy under the load P equals 0.3 whilst the area bounded by the influence
line over the uniformly loaded porLlon of the beam is
wz=7x8><0.8:3.2 m
Accordingly
Qr=Phy+qop=3x0.2+2X3.2=17.0 tons
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We shall now show that the function § of any load (whether con-
centrated or distributed) acting over a straight portion of an influence
line will be equal to the resultant R of this system of loads multiplied
by the ordinate kg corresponding to this resultani. In effect let us con-
sider the influence line for function S presented in Fig. 21.2 and

{P, lez R rg lﬁn

] a,
& sl ] e = i
“7?""‘--— ]
e

rHH

~ELYTY ]

a
Influence line for &
Fig. 21.2
a set of concentrated loads Py, P,, ..., P, with a resultant R

situated over the straight portion ed of this influence line. Then
S =aPh= J_u!kl - ngz—'l"'Pakg"“ aialw + Ijnf&n

Let us express the ocdinates ky, Ay, ..., etc., in terms of their
distances a,. as, ete., to the point of intersection O of the line
cd with the x-axis (Fig. 21.2)

hy=aytano; he=astana; Ry=gaztanea, ...,
fip, = ay, tan o
Substiluting these values in the formula giving the value of
function S wo obtain
S=(Pa;+ Paaa+ Pgay+ ...+ Ppay) tana

As will be readily seen, the expression in parentheses represents
the moment of the loads Py, P,, P, ..., P, about point O, the
moment being equal to the moment of their resultant about the same
point, i.e., to fla, (Fig. 21.2). Consequently, § = Ra, tan o = Rh,.

7.2. DETERMINATION OF THE MOST UNFAVOURABLE
POSITION OF A LOAD

We have just seen how Lhe influence lines for various functions
(abutment reactions, bending moment, shears, ete.) may be used
for the determination of the value of the appropriatec function
for any given position of a load,
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We shall now endevour to find the position of the load correspond-
ing to the maximum value of the function considered. Such a position
is usually termed the most unfavourable or dangerous position.,

Hereafter the maximum positive values of the function will be
denoted by Apaxs Mmax, @max, ete., whilst the maximum negative
values by A—miru M mins Qmint ete.

1. Case of a single concenirated moving load. In this case the posi-
tion of the load producing the maximum value of function § is
found very casily, It coincides with the position of the maximum

UL

a

Fig. 22.2

ordinate to the influence line. By multiplying the amount of the
load by this ordinate we shall obtain the maximum value of the
function under consideration. Positive maXimums of the function
are furnished by the largest positive ordinates whilst the negative
maximums or minimums—Dby the largest negative ordinates.

2. Case of a set of concentrated moving loads. In this case we must find
sueh a position of the given set of loads which would provide the
maximum value of ZPh, where & stands for the ordinate to the influ-
enco line corresponding to the respective load P. When the number of
foads is not very great the problem is solved by trial, the set of
Joads being shifted from one position to another. When the maxi-
mum value of the function is sought the loads are made Lo coincide
alternately with the maximum positive ordinates and when the
minimum one is required—with the negative ones. It may happen
that the loads will he simultaneously situated over the positive
and negative portions of the influence line. Such a case would arise,
for ingtance, if it were desired to find Sp,. for an influence line
represented in Fig. 22.2 due to a set of loads (say, a locomotive) whose
total length would exceed the length a corresponding to the positive
parl of Lhe line.

Fig. 23.2 shows the most unfavourable position of a twin-axle
bogic with equal wheel loads for various influence lines. Fig. 23.2a
represents the loading corresponding to My,... In this cage the
greatest value of LPh is obtained when the lefs wheel coincides
with the maximum positive ordinate. Should we bring the right
wheel over this ordinate, the left one would shift to ordinate mn,
and as the latter is smaller than mn, the sum 2 Ph would also be
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smaller than in the first case. Any other position of the set of loads
considered would equally lead to a smaller value of the bending
moment.

Fig. 23.2b shows the position of the same set of loads providing
for ;"lvfr,m-n.

Fig. 23.2¢ and d indicates the load positions corresponding to
the maximum and minimum values of the shearing force. In the
first case it is assumed that the lefi-hand load stands an infinitesi-
mal distance to the right of section J and therefore ils amounl must
be multiplied by the ordinate ab (IFig. 23.2¢). In the second case
it is assumed that it is the right-hand load which is inflinitely close
10 section F from its left and therefore the amount of this load must
be multiplied by the ordinate ab (Fig. 23.2d).

Let us consider now the influence line tor a function S consisting
of a number of straight portions intersecting at points «, b, ¢, d, ¢, 7§,
and g and a set of concentralted loads as indicated in Fig. 24.2,
the loads being in position J. As will be seen, none of thesc loads
stand over the vertices mentioned above, Assuming that the whole
«ot of loads is shifted over a distance x to the right (position I7),
the ordinate h;, correspending to a load P;, will be increased by

Ahs=Aztano;*
while the increment of function S will equal

e T2 i=n r=n
AS = 2 Py Ahy= 3} P;-Axtan o; = Az- Z Pi-tana; (6.2)

iy i=1 i=1
Should we shift the set of loads again by Az to the right (posi-
tion JI/) the new increment of functien S would still be given
by the expression (6.2). Assume now that position 17 corresponds to
the maximum value of the function § (in other words, that this
posilion is the most unfavourable or the most dangerous one). In
that case the increment AS will be positive when the set of loads
i3 shifted from position I to position /{1 and negative when the loads
move from position I to position I'77. Thus, when the set of loads
pasges through its most unfavourable position, the increment of

the function § (and accordingly the sum ) P; tan «;) must change
e

dign **
As will be easily seen from expression (6.2), a change in sign
of the increment AS may occur only whoen onc or more loads which

4

*In Fig, 24.2 the angles o, @, &ts, @,, and «; are positive whilst tho angles
aj; and o, are negative.
#*The same remains true for minimum values of the function §.
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were previously situaled over one rectilinear portion of the influence
line have shifted to an adjacent porkion.

IL follows that a dangerous position of the set of loads® will occur
when one or more load points coincide with the ordinates passing
through the apices of the influence line. This important remark greatly
facilitates the search for the most unfavourable position of the
loads, as it reduces the number of trials to the cases when one or
several load points stand over the said apices.

Hereafter both the load and the apex in the influence line over
which this load must stand io induce a maximwin of the function
under consideration will be termed erifical.

Let us assume now that position f7 is the most unfavourable
one and that it oceurs when the critical Ioad P, stands over the
critical apex ¢ of the influence line (Fig. 24.2). In that case the incre-
ment AS must be positive when the system of loads shifts towards
the right from position 7 to position /1 and it must he negative as
soon as the load P, passes to the right of point ¢. For the same reason,

the sum ) P;-tan «; must be posilive when the loads stand to

i=1]

the left of the dangerous position and becomes ncgative as soon as
they have shifted to the right of the latter [see exp. (6.2)]. We must
also have Pj-tan a; > Pj;-lan o which leads to w, >, Thus,
the slope of that portion of the influence line which is to the left of
the critical apex must be greater than the slope of the portion situat-
cd immediately to the right of this apex. This condition is satisfied
in Fig. 25.2a only. It follows that a eritical point in the influence
line will always coincide with one of its convexr apices or peaks, the
same remaining true in the case when the minimum valuc of a func-
tion is sought. This again reduces the number of trials necessary
to find a dangerous position for a given set of loads.

It should be noted that the intersection points of an influence
line which form peaks when the maximum value of a function is
sought cease being such when its minimum is required, and vice
versa. Thus, in Fig. 25.2¢ points ¢, ¢, ang g of the influence line form
peaks when S, .« is sought, while points «, b, d, and j would become
such were the minimum of § required. In order to ascertain the
nature of the extreme points ¢ and g of the influence line the a-axis
should be extended in both directions (as shown by dash lines in

+
* [t may happen that having reached its maximum, the function remains
constant during Lhe passago of certain loads from one of the apices to the next
one, In that case a maximwum will exist even though AS is nil and no load is at
an apex, but the rule just mentioned still holds good, for initially this maximumn
occurred when the eritical load (or loads) stoocF over an apex (or apices) of the
influence line.
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Fig. 25.2¢), these portions being considered as part of this influence
line with zero ordinates.

Wehavealready stated that when seeking S 45 the sum 2} P, X tan o,

i=1
is positive when the set of loads is situaled to the left of its most
unfuvourable position and negative when this set has shifted to the

right of the latter. 1t is clear that when S,,;, is required, the sum
i=n

2 P,tan a; will be negative when the loads are to the left of their
i=]

dangerous position and positive when they are to its right. This also
simplilies the determination of the most unfavourable loading.

No.& No.7

Pig, 28.2

As an example, let us find the most unfavourable position of
@ system of loads shown in Fig. 26.2 providing for §,,,. when the
influence line for S consists of three rectilinear portions as shown
in ¥Fig. 27.2, The tangents of the angles formed by thesc three por-
tions with the a-axis are

£ . 0.25 T 1
Lan oy = —!——8", tdnagz—-T:-—»i—L.‘-, tanas:—-“—s_

We know that the most unfavourable posilion of the loading
cannot oceur without at least one of the loads coinciding with the
peak b or ¢ of the influenco linc*.

i=mn
The loads being shifted [rom right to left the sum > P, tan «a
=1
will remain negative as long as all the loads are situated over por-
tiong be and cd of the influence line forming negalive angles with
the @-axis. As stated belore when the loads pass through a dangerous
position, this sum must change sign and become positive. Accord-
ingly, we must continne to move the loads in the same direetion,

+

*Apices a and & do not form peaks and therefore the passage of a load over
one of these two points is of no danger.
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i.e., froin right to left until this sum becomes positive, Let us consid-
er the loading represented in Fig. 28.2. So long as the loads remain
to Lhe right of this position

i=n

3 Pr-tanay=(3.5+3.5) +—(3.5+3.5+3.5) - —

i=]

U

A

1 17
~—(3-|-3)~8_=_§E

But as soon as they shift to the left this sum hecomes

i=n

3 Py-tan = (3.5+3.5+3.5) = —(3.5 +-3.5) 5 —

i=1
—B+3)g=5>0

This means that the passage of the set of loads from a position
slightly to the right from the one indicated in Fig. 28.2 to a posi-
tion slightly to its left causes a change in the sign of the increment
AS from negative to positive. Therefore, the position represented
in Fig, 28.2 is a dangerous one and load 3 is a crilical load.

Suppose now that the loads Nos. 8 and 9 (sce Fig. 26.2) which are
still beyond the limits of our structure when the first dangerous
loading oceurs are considerably greater than all the other loads and
total 15 tons each. In that case if the train of loads is shifted further
o the feft so that loads & and 9 would reach portions be and ed of

Lie influence line the sum 2 P;-tan a; would again become nega-

imm]

tive, and at the moment one of these loads passes the peak b it will
change sign again. Accordingly there would be a second dangerous
position of the set of loads considered, for which the value of S, ..
should he again caleulated, ‘Lhe larger of the two maximums should
be adopted for design purposes.

Let us now consider the case when the influence line forms a
triangle as represented in Fig. 29.2. Let P, denote the eritical Joad,

> P —the sum of the loads situated over the left-hand portion of
L

the influence line, and ) P—the sum of these loads over the right-
R

hand one.
We have shown previously that when the set of loads is to the

i=n

left of its dangerous position, the sum »} P;-tan q; is positive and
fe=]

when i% shifts to the right the sum becomes negative. In other words,
5853
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in the present case
ian a;,(E‘LP L Po)+Hlanag 2P >0
R
and
tanag 2P 4 tan og (2P + Pep) <0
L R

Substituting in the above expressions h":"“ for tan o, and —i”‘bi’i
for tan ap (see TFig. 29.2) and carrying onl some clementary
transformalions, we obtain

PPy EP
T

R
a = b

and

P P.,.—EP

I. i

[/} < b

}:P | Pt'r
Adding to both sides of the first cxpression IT and to hoth
sp

sides of the second one % we get

EP P IR
L It
b

=&
(EP 4 Po) —5—>>
I
and
g Eﬁ’--"—Pc,f}:P
vy =1 R
LLP al = b

Substituling £ for (@b} and denoting the sum of all the loads
by ZP, these cxpressions will casily reduce to

P+ Por>3P - (7.2)
L
and
SP< 2P 8.2)
L

These two inequalities show that the ¢ritical load is the one which
renders the sum Z P 4 P, greater than E P _al__ , provided that 2 P
L

L
is smaller than the latter.

In most cases the moving load (say, a locomotive) may enter
the structure (say, a bridge) from both sides, and to each of these
cases there will correspond its own maximum value of the function S.

n*
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In order to obtain the larger ol these two values the front wheels
of the locomotive, which are usually the heaviest, should be placed
over the lefl-hand portion of the influence line when « << b (see
Pig. 28.2) and over its right-hand portion when a > b.

Problem. It is required to find the wmost dangerous position of a train of
Youds shown in Fig. 31.2 with respect to the influence line for function S represent-
ed in Fig. 30.2 and characterized by { = 8 m, ¢ = 2 m and 4, ,, = 1

Solution. The sum of loads which can find plaee on a span 8 metres Iong
equals R =5 % 3.5 = 17.5 lons,

Shilting the train of loads from right to left and making use of the inequalities
(7.2) and (8.2}, wo shall find

PPy 17,5 %=4.3?5 tons

and
2P < 4,375 tons

This shows that the second load is the criticnl one for only in that
cage both of the inegualitics bhecomo satisfied, EBifectively, lel 2P =3.5 tons

and P.,=3.5 tons, then
EP4 P, =3.548,5=7.0 > 4.375 tons
L

and
ELP= 3.5 < 4.375 Lons

The most unfavourable position of the train of loads thus found is indiecated
in Fig. 32.2. ITn order to find the value of 8. corresponding Lo this loading
lel us find the ordinates hy, g, hy, ks, and &,

hy=0.4 tana:O.&%-—-—U.‘.’.

"2=~hma:=1

hy=(1.6 X 2+41.2) tan p=(1.8 X z+1.2)%=0.733
hy=(1.64+1.2) tan ﬁ=(l.6—|—1.2}-|6—=0.d67

h5=t.2tunﬁ=1.2>(_%=0.2

wherefrom
Swnaxe=ZPh=PZh=3.5(0.241-4-0.78340.467 +0.2) = 9.1

1f the ordinates of the infitence line were measured in metres, the [unction
Sipax = 9.1 would be expressed in top-metres. On the other hand, if those ordi-
nates were dimensionless the result obtained would be expressed in Lons.

3. Case of a moving uniformly distributed load. In Art. 6.2 we
have seen that the value of a function § induced by a uniformly
distributed load is equal to the product of the intensity of that
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load g by the area @ bounded by the influence line and the ordinates
passing through the limits of the load, i.e., $=g¢w. The intensily
of the load g being constant, the maximum value of the function
will correspond to the maximum of ® which in its turn will oecur
when the load 4 will occupy the whole of that portion of the structure,
over which the influence line does not change sign.*
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In Fig. 33.2 we have represented the most unlavourable cases
of loading for a beam with overhang carrying a uniform load. Casc a
indicates the load yposition for M, ..; case b for M y.q.; case ¢
0T Qrmqx and case d for Q- It will be noted that in all the four
cases these portions of the beam which correspond to the positive
or negative parts of the influence line are fully loaded.

*

*Jt is assumed that the loadsmay be distributed over a stretch of any length.
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8.2. DETERMINATION OF MAXIMUM MOMENTS AND FORCES
USING EQUIVALENT UNIFORM LOADS

We have seen that the delermination of the maximnm value
of a [unction by the direct application of a train of concentrated
loads to the influence line involves a considerable amount of cal-
culations due to the necessity of finding the most unfavourable
position of the loads. In the case of triangular influence lines, all
the operations may be considerably simplified through the use of
so-called equivalent loads, whose values can be taken from appro-
priate tables and graphs,

The equivalent load may he defined as a uniformiy distributed load
which will induce in « given member (or section) of the structure under
consideration the same force or moment as the corresponding system of
concentrated loads in their most unfavourable posilion.

Denoting by g., the intonsity of the equivalent load and by Q
the area bounded by the influence line, we may wrile the following
aquation

SPhy = 4py©

from which it may be scen that there will be always ouly one
definite value of the eqnivalont load for each particular loading.
Indecd, solving the above equation for Geq We oblain
Pk
oy
Lt our example of Art. 7.2 we have found that for the ilrain of
loads considered Lhe maximum value of a certain function S to-
talled 9.1, 1n Lhig case
0.1 9.1 i
Teg = Tixg =T=Z.2-75 tons per metre

7

[t might seem that this leads us exactly nowhere, for in order
to find an equivalent load we must livst determine the maximum
value of the function by trial. In realily this is not so. For a triangu-
lar influence line the intensity of an equivalent load for o given sel
of concentrated loads is independent of the actual value of the
ordinates to the influcnce line and will alter only with a change
in the length of that portion of the structure which carries the loads
and with a variation in the position of the influence line apex with
respecl Lo its extremilies. This permits computation and tabulation
{or representation in Lhe form of graphs) of equivalent load inten-
sities pertaining lo typical loading schemes and to the more con-
mom shapes of triangular influence lines.
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Let us call similar two influence lines when the ordinales of one of
them may be obtained by mulliplying those of the other by « constant
factor, and let us show that the intensity of the equivelent loads for tiwo
sinilar lines remains the same.

£
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Fig. 34.2

Tig. 34.2a and b represents two such lines; the base lengths of
these lines are the same while theiv ordinates differ by a constant
factor cqual to n.

The equivalent load for the line in Fig. 33.2b is

Joq = L;r:fh"' with hi=nh;

and
Q' =0.5nh (a+b) = n

where #;, and © are the ordinate and the area of the influence line
represented in Fig. 34.2a, respectively.
Substituting Q' and ki by their values cxpressed in terms of Q
and A we find
nlih; YPihy
G =g ="m —la

[or line a.
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We have thus proved that equivalent loads for similar influcnce
lines are identical.

The intensity of the equivalent load depends on three factors only:
(1) the distribution and magnitude of the loads; (2) the length of
the loaded portion; (3) the pusition of the apex of the inftuence line
over the span (or over the loaded portion of the structure).
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Intensitics ol equivalent loads computed for a standard train
H, (Fig. 35.2)* used in the U.S.S.R. for designing railway bridges
are tabulated hereunder.

As will be observed, the table contains the values of equivalenl
loads for various lengths of the loaded portion (up to 200 m)
and for three differeni positions of the influence [ine apex, namely
when the latter is over the edge, at quarter span and at mid-spau.
When the apex falls at some intermediate point, the value ol the
equivalent load may be obtained by interpolation,

+

* The distances between loads in Fig, 35.2 are given in metres.
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Table 1.2

Equivalent Loads per Running Metre of Track for Standard Hy
Train in Tons

Type and sketoh of influence Jine
Apex at the extremity Apex at guarter span Apex in the migdle
Length
10AuEd A
i 2oy e N
in m
| 7.0 7.00 7.40
2 A.20 350 3.50
A 3.42 3.01 2.51
1 315 2.57 2,45
51 2,01 24,41 2.41
0] 2.80 2.26 2,26
i 2.71 2.26 2,26
8 2,63 2.28 3.248
B 2.51 2.23 D23
10 2.42 2.16 2.16
12 2.29 2.06 1.08
14 2.16 1.97 1.88
16 2.08 1.88 1.82
15 1,49 1.77 1.79
20 1.88 1.69 1.74
40 1.77 1.61 1.59
45 1.73 1.56 1.52
50) 1.70 1.55 1.46
til} 1.65 1.52 1.44
70 1.61 1.406 1.4%
30 1.58 1.43 1.43
£ 1.01 1.37 1.37
0 1.46 1.33 1.462
&0 1.41 $.28 127
4o 1,37 1.26 1.22
100 1.34 1.24 1.18
110 132 1.22 1.15
1:20) 1.29 1.20 1.13
130 1.27 1.18 1.114
145 1.206 1.16 1.40
150) 1.24 1.45 1.08
160 1.23 1.14 1.07
170 1.21 1.12 1.06
181 1.20 1.11 1.06
14n) 1.1% 1.10 1.05
20 1.18 1.00 1.05
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By multiplying all the axle loads of the standard /I, train by a
factor & which characterizes the class ol loading, we shall oblain
loading schemes for different classes of trains. Thus, the design
of Leank lines is carried out for trains of class 7 or 8 (#; or /) whilgt
lines ol local importance are designed for Hy and #, trains.

Problem 1. Using the method of equivalent loads dotermine the stress producid
hy a standard I, train in member 4-5 of a single track bridge trnss represented
i Fig. 36.20, the corresponding influence line heing shown in Fig. 36.25,

Solutien. In ordor to obtain the maximum value of the tension induesd the
whale purtiou of the gpan corresponding to the posilive ordinates of the influence

Z % & 8 7

&
(a) ¥
=L
7
;;7;3‘7/’, |
| | g (
e i | fnflvence line for Dus |
" e = | 5 I
It T o a ]l ]
g 73
o Bl 4] ; |
Jm -jfrz_' ~71m &m ale
f B " 1l
Fig. 36.2

Tiie should be Joadoed: the length of this portion totals 8.0 m. In colurnm 3 of
Table 1.2 we find that the equivalent load for wain f; would equal in that
eise 2.28 tons per metre. The maximom tension produced by an 1, train will
thea bo derived from the following expression

3 p 5 8

2D, kg =T X 2,28 % T; X = =39.90 Lons
whenee _

Dys=0.5%359.90=19.95 Lons
The maximum compression will be obtained by loading the whole stretch

over the negative portion of the influence line, From Table 1.2 we find that

*

* The faclor 2 in front of the left-haud term of this expression is due
to the fact thal the equivalent loads in Table 1.2 are given for one track,
i.¢, for both trusses of a single-lrack bridge.
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for u length 1= 4 m the equivalent load is 2,57 tons per metre (see column 3).
The maxinum compression Will then be given by
= .
2D =Ry =T X 2.57 X TR ~—2—-=ii.2-f( tons
wheneo
Dy=0.0x 11.24 5,62 tons

Problem 2. Using the mothod of equivalent loads find My 0w @ 1 pax.
and € g0 Arising i an end supported plate girder bridge (Fig, 57.24) during
the passage ol an Hy train. The mfluence lines for bending moment and shear

I
(a) g — ;;
Za=2m! b=8m :
| _;: L=10m !
Sl T, Infiuence Ling for M |
%
6y | < @ !
=
; _ : Influence line for Qy ||
oy o
e —
O T L |~
“_‘-‘—\-__ t 1
Fig. 87.2

in soetion 7 of one girder are represented in Fig. 37.26 and c. The bridge is again
a single track one, the vails being fixed to stringers and cross boaus suppurted by
two parallel girders. Accordingly the vquivalent load for one girder will he half
of that given in Table 1.2,

Solution. Determinution of My pax- The length of the loading should he
taken equal to the whole span of the girder, i.o., to 10.0 m, As the apex of the
influence line falls between the quarter pan point and the end of the givder the
equivalent. load must be found by interpolation. For an Hy train

2.0_
28
=242 0,26 % 0,8222,21 tons por melre

da= 10+ {1, =0 %=2.4‘4‘. 1(2.16 —2.42)

wlhere gp =+ equivalent load for a loaded length of 10.0 m with the influence
line apex over the Iefl extremity of the girder (found in Tabie 1.2}
7., = sane equivalent load but for an influence line with thie apex

at quarter-span (also found in Table 1.2}

. . ; . 1
. == equivalent Yoad for the case when the influence line apex is ul —
W

of the givder span (as in Fig. 37.2b)
a = distance from the influence line apex to the nearest end of ihe
girder
= Tength of loading equal in this particular case to the whole span
of the girder.

-
|
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For an H; train the equivalent load will amount to
Ja X 7=2.21 X 7=15.47 tous per metre

For one girder it will reduce to one half, i.e., gy==7.735 tons per metre.
The area "uwnder the bending moment influence line for section 7 equals

{u[-—--%—x 10x1.6=8 m?2
Consequently
My == g0y =7.735 % 8,0=01.88 Lon-metres

Determination of QI pax. In order to find the maximum positive shear inm
section / the [oad should cover the entire poesitive portion of the Qr influence
line {Fig. 37.2¢). The length of this portion is equal to 8 metres and the influence
line apex is over its left extromity. Table 1.2 yields the following value for the
equivalent load corresponding to tho standard Jf; Lrain

gp=2.03 tons per metre

For an If; train this load will inerease sevenfold and will total 7 3 2.63 =
= 1B.41 tons per metre, while for one girder this shonld be halved, i.e., g5 = 9.2
tons per metre.

The area hounded by the positive portion of the shear influencoe line cquals

mz=—;-}<8x0,8-=3.2 m

and therelore
Qr max=10202=9.2 % 3.2=229.44 tons

Determination of Qp i The greatest negative shear in seclion / will oceur
when that portion of tho girder where the ordinates to the shear influence line
are negative (Fig. 37.2¢} is loaded in its entirety. This portion is 2 metres long
and Lhe influence line apex is at its right-hand extremity. For this case wo
find in Table 1.2 an equivalent load corresponding to a standard H, train equal
to 4.2 tons per metre. For an fH; train this must be increased by 7 or to
7 % 4.20 = 29.4 tons per metro, and for one girder it rednces to gz = 0.3 X
% 29.4 = 4.7 tons per metre.

The area under the negative portion of the influence line equals

w3=—%><2)<0.2=—0.2 m

Hence,
Gt min=qa03= —0.2 x14.7T= —2.94 tong

9.2. MULTISPAN STATICALLY DETERMINATE BEAMS

By multispar statically determinale cantilever beam we understand
a geometrically stable structure consisting of a series of simply
supported heams with or without overhangs connected togethor
by means of hinged joints. Such beams might be also cailed mniti-
span_ hinged beams. The multispan cantilever beams also belong
to this class of beams constituting a particular case thercof,

Single beams constituting these structures might be cither of
plate girder or trussed construction or both. The theory of the multi-
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span statically determinate beams has been developed in 1871 by
the eminent Russian engineer G. Semikolenov.

Beams of this type are usually more cconomical than a series of
disconnected simply supported beams spanning the same opening.
This may be illustrated by the following example: assume that two
equal and adjacent spans AB and BC 10 metres long each have to

g=2t/m g=2t/m

!

(c)

(d) : Py LE

A4

= il X

M= 16tm - Mgy = 16
Fig. 35.2

be bridged over, the design load being evenly distributed and equal
to 2 tons per metre. In the first instance let us try separate simply
supporled beams (Fig. 38.2a). The bending moments at midspan
of each beam will amount to
_at _ 2xio
My="2 =55
The diagrams of these bending moments are represented in
Fig. 38.2b.
Now let us envisage a double-span hinged beam, and let us use
abeam wilha two-metre overhang BD across the span 5C (Fig. 38.2¢),

= 20 ton-metres
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this overhang being hinge-connecled Lo the end of an 8 metre beam
AD. The maximum bending moments (positive and negative) in
the most dangerous cross seetions of these two boams will he:
at midspan of heam AD

282

M,= 3 = 16 ton-metres

Over the support 8 of beam CD (heam AD (ransmilting a con-
centrated load P =8 tons through hinge D) the hending moment

9% 92
Mp= — (8 X 2 4 '4);2 ) = —20 ton-metres
In the middle of the span BC the bending momenl will amount to
axdpr i
M,= 210 —»%: 15 ton-metres

but this is no longer a dangerous section, for the maximun moment
musgt coincide with zevo shear and the latter will ocenr at a dis-
tance z [rom the righl-hand support, this distance being devived from
the following equalion

QOr=—C+gz—=10

where ¢ is the right-hand abutment reaction equal 1o

& —Bx2—2x2x112x10x5
T 10

=8 tous

and therclore
—8+-2x=0 x=4% melres

The hending moment in this seclion will be
My =38 x4—2 x4 x2=16 ton-metres

The bending momenl diagram for the double-span hinged beam
is represented in Fig. 38.2d, 1t will be observed thal in absolute
value the bending moments in Lhis beam are smaller than in cach
of the separate beams considered in the first place and therefore
the double-span beam is obviously more ecconomieal.

The use of continnous beams also leads Lo a substanlial reduction
of bending moments as compared with single beams, but the multi-
span statically determinale beams present certain additional advan-
tages: (a) their relativel y short members ave well suited for prefabrica-
tion, transportation and installation, using standard hoisting equip-
ment; (b all the forces induced thercin ave statically determinate
and will not be influenced by any settlement of the supports. The
above considerations have led Lo fairly wide nse of mullispan can-
filever beams in engineering slructures.

Statically determinate multispan beams may always he obtained
introducing a number of hinges inlo a similar eonlinuous beam.
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As will be shown later the number of hinges must be equal Lo the
degree of redundancy ol the continuous beam.

Fig. 39.2a represents a five-span continuous beam whose constraints
al the supports may be schematically replaced by seven hinged Dbars.
In order to determine the forces acting in these bars we have only
three independent equilibvium equations and therefore the stress
computation for this beam cannot be carried vut with the aid of sta-
tics alone. This beam has a degree of a redundancy equal to Tour.

W E
‘ . P @({"} i

o

W - ‘\v/
(r}
Fig. 89.2

If we denote by € the number of conslraints al the supports,
then the degree of rednndancy n of the beam will be equal to n —
= (' — 3. Applying this formula to the beam in Fig. 3.2a we shall
ohtain n =7 — 3 = 4.

Each hinge introduced either in the span or over a support of
a continuous beam provides for one additional equation ol statics,
this equation expressing that the sum of moments of all the external
forces applied to Lhe beam either to Lhe right or to the left of the
hinge about ils centre cquals zero.

Fience. when the number of hinges introduced into the beam
equals its degree of redundancy. the beam hecomes stalically detor-
minate for all the unknowns may be obtained in that case wilh the
aid of the equations of staties alone.
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The hinges must be distributed along the beam in such a way
that each parl of the structure should become statically determinate
and remain geometrically stable. *

Several ways of transforming ihe continwons beam ropresented
in Fig. 39.2a into a statlically detcrminate one are illustrated in Fig.
30,26, ¢, dand e, Fig. 39. 2f gives an example of an unsatisfactory hinge
distribution for although their number in this case also equals
four and therefore corresponds to the degree of redundancy of the
initial beam, portion AR of the transformed beam sLill remains
slatically indeterminate while portion £ZC has become unstable.
(The possible digplacements of that portion of the beam are shown
in dash lines.)

A continuous beam with oue built-in end isrepresented in Fig. 40.2a.
Il should be remembered that a built-in end is equivalent Lo three
support constraints as represented schematically in Fig. 41.2.
Accordingly the total number of constraints of the beam is € =7
and its degree of redundancy is n = C — 3 =7 — 3 == 4,

Thus, in order to transform this beam into a statically determinate
one, four hinges should be introduced as illustrated in Fig. 40.26.
A continuong beam with two built-in endsis represented in Fig, 42.2a:
the right-hand end of this beam still retains one degree of freedom
as it can move horizontally. Therefore at this end the namber ol
restraints is equal to two as indicated in Fig. 43.2. Thus, the total
number of constraints of this beam is € = 8 and its degree of redun-
dancy cquals n = 8 — 3 = 5. In order 1o make this beam statically
delerminate it would be necessary to introduce five hinges. One way
of distributing these hinges is shown in Fig. 42.2b,

T’he best way to find out whether a multispan beam of that type
is stable or not and also to get a clear picture of its work under load
is to represenl schematically the interaction of ils soparate parts.
Assume for instanee that it is required to investigate the stability
of the beam represented in Fig, 44.2a. The interaction of its elements
is represented schematically in Fig, 44.25, where all the intermediate
hinges arc replaced by fixed hinged supports eonnecting the appro-
priate beam members, This schematic drawing shows clearly that
the whole beam is geometrically stable, for each ol its constituent
members is a simple beam ‘with or without overhang connected
to the ground or to another part of the structure whose stabilily is
ensured by means of three nonconcurrent bars.

Effectively, beam ABE is connected to the ground by means
of three supporting bars and is thereforc geometrically stable.

*

*A method of investignting the geometrical stability of a multispan hinged
2.4

beam was presented in Art. 2.1.
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The beam ECF is supporled by two bars at its end E and rests on
a vertical bar slanding directly on the ground at C. The supports
of beam FD are exactly similar, thus ensuring its stability.

The examples presented above lead to the establishment of the
following rules relative to the distribution of hinges in beams which
have no built-in ends:

(1) there may be no more than £ hinges in each span;

(2) there must be no hinges in the spans adjacent to the one provided
with 2 hinges:

Fig. 48.2

(3) spans coniaining one hinge only may follow cach other,with
the exceplion of one of the extreme spans where there should be no hinge
al all.

Thus far we have considered cases where all the supports butone
were free to move in a horizontal direction. Let us now examine
cases where two or more supports are fixed and will allow no hori-
zontal digsplacement. In Lhig case the introduction of ordinary hinges
becomes insulficient for the lransformation of the continuous beam
into a statically determinate one, This would require the installation
of mobile hinges which offer no resistance to lorizontal displace-
ments. One of these hinges is represented schematically in Fig. 45.2.
An example of a statically determinate beam with three fixed sup-
ports and two movable hinges is given in Fig. 46.2¢, the interaction
of its elements being schematically indicated in Fig. 46.26,

The reader is invited to establish on his own the relation between
the mumber of fixed supports and of mobile hinges in a statically
determinate multispan beam. )

The most commonly used multispan hinged beams are represent-
ed in Figs. 47.2¢ and 48.2a.

G*



34 Beams

The first one is characterized by alternating double-hinged spans
and spans devoid of any hinges.* It consists thus of a series of beams
with two overhangs supporting ‘suspended’ simple beams. The
second beam is characterized by ths presence of a hinge in each
of its spans with the oxception of the last one; the interaction of
ils elements is represented schematically in Fig. 48.25.

Fig, 49.2

It should be noted that the favourable effect of the overhangs
may be taken advantage of not only in ordinary solid web beams
but also in trussed systems such as indicated in Tig. 49.2. The
reactions of such a system will be found in exactly the same way
as for an ordinary statically determinate multispan heam,

10.2. DETERMINATION OF MOMENTS AND FORCES INDUGED
BY A SYSTEM OF FIXED LOADS IN MULTISPAN
STATICALLY DETERMINATE BEAMS

The design of statically determinate multispan beams will be
now illustrated using as an example the hinged beam represented
in Fig. 50.2a. Fig. 50.2b contains the schematic drawing of the
interaction of its separate members.

The reactions R 4, Ry, Ry, Bp will be reckoned positive when
directed upwards, while the forees 2, R,, and R; arising in the
hinges from the interaction of the different elements of the beam
will be considered such (see Fig. 50.2b) when the upper element
exerts a downward pressure on the lower one. Fig. 50.2¢, &, e, }
shows all the separate elements of the beam as weoll as all the forces
acting on these elements. All tho reactions and forces indicated
in these drawings are positive.

We shall start with determining the reactions R, and R, of the
upper most simply supported element H,H, spanning a length of
1 m. This element is subjected to 2 uniform load whose intensity
g equals 1.2 tons per metre and also to the reactions at the hinges

4

*The usual three-span cantilever bridge belongs to this type of structures.
Each of its outer spans is anchored down at the shore and overhangs into the
central span abhout one third of its length. Tho suspended span, resling on the
“cantilever arms”, occupios the remaining third of the central span.
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(see Fig. 50.2d) totalling
- _qlg_l.:&xi_-ﬁ
R‘—Re———z === 0.6 ton

Next we shall determine the rcactions of the element A BH, situat-
ed just below the element &4/, and constituting a simply supported
beam with two overhangs. This beam is subjected to the action
of loads and reactions indicated in Fig. 50.2¢. From the cquilibrinm
of moments we oblain

EMA= = 1)1“1 —I— qaq (Il —!—'%g') +Rl (ll --|—{Tg)—RB£I ={
whereirom
—Piay-t-qay (L+F ) Ry Uy hag)

I{H = Ii =

=_L_[_2><1+1.2x1 (2 +-;-)+o.{-;(2+1)]=1.4 tous
The equilibrium of ithe moments about point B yiclds

EMp= —Py(ay~ =10
and Lhus
" qag s 12 :
Ji(“l‘{""l}"'_z__ﬁlaz 2(‘1—[—&]-—12XT—D-Q}X1
Rdz tl = 5

=2.4 tons

The values of the two reactions just found can be checked using
the equilibrium equation of the vertical components

ZY = —Pi—qa;— B, - By + By =
=—2—1.2%1-0.6+2.44+1.4=—3.84+3.8=0

Thus, the values of reactions 2, and Ry are correct.

Congider now reactions R, and R, of the simply supported beam
with overhang //,C,; the forces and the reactions acling on this
beam are shown in Fig. 50.2¢. The equilibrium equation furnishes
again

SMo—= — Ryuy— qas—?— L Paa, — Ry (@, a5 =0

wherefrom

Bi— —Hgd:l—(_‘.ﬁf}‘.'t%—'r.flifh‘
A= ﬂ..|—|—a‘r, e
= s 2.
= =08x1.3-1.2%0.5x1. B4-8X1 . 0.5066 ton
|
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The other cquilibrium equation gives
M= — Ry (az- a4 + as) —qag (% '-a;+a5) —_

— Paas+ Re (ag+az) =V
wherefrom

Ratag+ ag-tas)raes (-%g'—i- “4-!-05). - Poag
Sk as+4as o
0.6(L.241+1.5)4-1.2% 1.2 (1—52_;-1+1.5) +3x1.5

= =4 .474 4
p— 4. 474 tons

These two reactions will be checked as above
3Y = —Ry—qay—Po+ Be+Ry= —0.6—1.2x1.2—-3+
4 0.566 +4.4T4d= —5.04-4-5.04=0

which shows that all the compulations were carricd out correctly.

Next comes the turn of the cantilever beam A oD loaded at its
free end by the vertical pressure Ry (see Fig. 50.2f). From the equi-
librium of the moments we obtain

EMp= —Il;— Mp=10
teading to
Mp= —Ryly== —0.566 x 2= —1.132 ton-metres

The negative value of the moment obtained indicates that Lhis
moment acts in a direction opposite to the one indicated in
Iig. 50.2f. From the equilibrium equation

SY = —f;4+Rp=0
we get _
Rp=PR;=0.566 ton

Having determined all the reactions at the supports and all the
pressures exerled by the separate elements of the beam on cach
other, we may now proceed with the determination of shears Q and
bending moments M acting in the various cross sections of the heam
and with the copstruction of the corresponding diagrams. There
are two ways of carrying out these computations.

(1) The shearing forces @ and the bending moments M for the
multispan  statically determinate beam wunder consideration
(Fig. 50.2a) may be detormined in the same way as for an ordinary
statically delerminate beam faking into consideration only the
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loads applied and the reactions at the supports but disrogarding
the interaction pressures at the hinges.*

If carried out correctly, these computations must show that the
hending moments at all the hinges arc nil. The values or expres-
sions of the shearing forces Q and the moments M may be then used
for the construction of the corresponding graphs.

(2) The shearing forces and the bending moments may be deter-
mined separately for each of the elements constituting the multi-
span beam allowing the construction of the @ and M graphs for
each of these elements (Fig. 50.2¢, d, e and f). Putting together
these graphs will give the corresponding diagrams pertaining to
the full leagth of the beam.

The first of the methods just described may be recommended
for beams with a reduced number of spans whilst the second one
is better suited for the heam consisting of a large number of elements.

In our case the first of the two mcthods will be used for the con-
struction of the shear diagram. Disregarding the intermediate hinges,
the beam under consideration may bhe divided into five portions
characterized by different expressions for the shearing forces. These
portions are denoted by corresponding ciphers in Fig. 50.2g. Let 2
represent the distance from the cross section considered to the left
extremity of the heam, the following equations for cach of the
portions mentioned will then be obtained.

Portion I

Oz 1.0m):Q’=E§= —Py=—2 tons
Portion Itf
(Im < z<3m): Q" =S¥V = —P 4+ R,=—24+2.4=0.4 ton
Portion 117 -
(Bm< x<6.2m): Q”’:ELY= —P4-By+ Ry—q(z—3) =

=—242.441.4—1.2(x—3)=5.4—1.22
Portion IV
(6.2mgxg7.2m):o’v=—zgf:—ﬂﬁpn:
= —0.566+3=2.434 tons
Portion V
(1.2<z< 10.7m):o"=—zgf= — Rp= —0.568 ton
.’

*These intoractions have heen already taken care of in the determination
of the reactions at the supports.
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The values of the shears thus obtained for all the five portions
of the beam will furnish the shear diagram represenled in Fig. 50.2g.

The bending moment diagram will be obtained by the second
of the two methods described. The corresponding graph for tho
element 4 BT, will be derived from the moments due to the actions
of the force £, = 2 tons, to the reactions at the supports R, =
= 2.4 tons and R, = 1.4 tons, to the uniformly distributed load
g = 1.2 tons per metre, and to the interaction force 17, — 0.6
ton (see Fig. 50.2¢). his graph will be rectilinear along the left-
hand overhang @, = 1 metre and over the span I == 2 melres, no
distributed load acting along these parts. At the left exlremity
of the beam the bending moment will be nil, at the support A it
will total —Pya; = —2 ton-metres and over the support B it equals
—Pi ey + 1)+ Ruly=—2(1--2) 4 2.4 x 2 = —1.2 ton-melres,

Within the portion BH, (right-hand overhang) the bending
moment diagram will be concave, for this portion of the beam is
subjected to a distributed load acting in a downward direction.
At the right-hand extremity of the element ARII, the bending
moment will again equal zero. The data so obtained yield the diagram
represented in Fig. 50.2h.

Using the same procedure we shall obtain the bending moment
diagram H,CH, (Fig. 50.2¢). At both extremities of the beam
(hinges IT, and H ;) the bending moments will equal zero. Under the
load P, the moment will equal R,e; = 0.566 X 1.5 = 0.849 ton-
metres and over the support € it will amount to

Ry (s + @) — Paa=0.566 (1.54+1.0)—3 x 1 = — 1.585 ton-metres

Over the left-hand overhang the graph will be curvilinear while
between the supperts it will be represented by a straight line. These
data will be again used for the construction of the bending moment
graph pertaining to the element H,CH; (Fig. 50.2h).

The bending moment diagram for the element £, H, will be hound-
ed by a conic parabola exactly similar to the one obtained for a uni-
formly loaded similarly Suppnrted beam (Fig. 50.2¢). Its maximum
ordinate will equal %I‘z—i—z-gﬁﬁ = 0.15 ton-metre. The diagram
for the clement H;D will bo bounded hy a straight line paseing
through zero at point iy and through the top of the ordinate M, =
= —1.132 m at the wall as shown in Fig. 50.2k for the corresponding
element.

All these separate graphs when placed together will furnish the
bending moment diagram for the full length of the beam appearing
in Fig. 50.2A.

The reader is invited to check the @ and the M diagrams using
the expressions mentioned in Art. 1.2.
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Four different continuous beams are shown in Fig, 51.2. It is
suggested that the rcader should find several alternative schemes

&,&k\ﬁ&\ﬁ&
N N
N

as

of rendering each beam statically determinate by introducing inter-
mediate hinges. He is also invited to carry out all the computations

\§

Fig. 51.2

P=10t p——
z
ez - f

T 2im
Z 4
Jin Y Fm |, 3 Sm
¥ i = T |
Fig. 52.2

leading to the construction of the bending moment and shear dia-
grams for the beam of Fig. 52.2 and to find the length of the overhang

Fig. 58.2

!y which would equalize the bending moments at mid-length of
the three central spans of the beam represented in Fig. 53.2.
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11.2. INFLUENCE LINES FOR MULTISPAN STATICALLY
DETERMINATE BEAMS

In Art. 5.2 of the present chapter we have shown that when the
load is transmitted through secondary beams (stringers) the influence
line for the main end-supported beam remains rectilinear. We
shall show now that in this respect influence lines for multispan
slalically determinate beams are quite similar to those just men-
tioned.

Assume that it is required to draw the influencc lines for reactions
A, B and € of beam AC represented in Fig. 54.2a.

The element €D of this beam is freely supported at one end, its
other end being hinge-connected to the end D of the cantilever heam
AD. When the unit load is applied to the element CD the reactions
al points D and C will be exactly the same as in the case of a simply
supported beam, but when the load shifts to beam AD the reactions
at points D and C become nil. Accordingly, the influence line for
reaclion € will have the shape indicated in Fig. 54.2¢.

As regards the reaction at support A its value will be the same
as for an ordinary beam with overhang as long as the load unity
is applied between points 4 and D, When this load is applied al
point £ the reaction at A will he directed downwards and will
reach its maximum negative value. When the load unity moves
along the element D the pressure exerted at hinge ) will equal

iz . G sk :
I—z , in other words, it will have the same value as though it were

tf‘ansmitt.ccl to the same point through a siringer and cross beam.
Accordingly, the influence line for reaction A of the element DC
will be rectilinear with a zero orvdinate at poinl C. This influence
line is reprosented in TFig. 54 2d while that for the reaction al point
B is shown in Pig. 54.2e.

Let us consider now the construction of the influence Iine flor
the shears in sections 7 and I7 of the structure schematically repre-
sented in Fig. 5.2a.

Section I will be subjected to the action of the shearing force
only when the unit load P is applied between abulment / and
joint 3. When this load is applied at joint 2, it is fully transmitted
to the overhang of the main beam with the shear in section 7 then
becoming equal to —1. When the Joad unity shifts to the lefl or
to the right of point 2 the pressure at this joint will decrease becoming
nil when the load reaches point I or point 3, the value of the said
pressure diminishing propovtionally to the distance of the load
froms one of these two points. Accordingly, the intluence line will
be triangular in shape with an ordinate at seclion I = —1
(Fig. 55.2b).
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Tn section [ the shearing force will be exactly the same as in
the case of a direct application of the load as long as the latter
iz sitnated between points 2 and § or 6 and 10. The corresponding
portions of the influence line will therefore be represented by the
1ines ¢cq and cob which cat the verticals passing through points
A and B at +1 and —1, respectively. Between points 5 and 6 the
influcnee line must remain straight, its ordinates 25 and kg having
alrcady been found and therefore we only have to join points ¢
and ¢,. When the load unity is applied to the terminal beams 7-2 or

;A %3 ﬁ;’ﬁ, Iﬁz %c
s i ,

im | Im_J'?,Zm_L_ 2.5m

=
{ll

7.0m
Fig. 56.2

70-11 the value of the shearing force in section 7T will vary from
fip (or hyg) to zero, the latter value corresponding to the case when
the load reaches the abntment. The variation of any function being
linear when the load shifty along a secondary beam, we may simply
connect the ordinates at points 2 and 70 with the points ol zero
ordinate 7 and 77 (Fig. 55.2¢).

Let us now consider the construction of influence lines for stat-
ically determinate beams of more than two spans. In such cases
it is always recommended to begin with tracing the interaction
scheme.

Fig. 56.2a represents such a beam, the interaction scheme ol
its four clements being shown in Fig. 56.2b. Let us first construct
the influence line for the reaction at support 4 (Fig. 56.2¢). For
that part of the beam {rom its left extremity to the hinge H, the
construction will be carried oul cxactly in the same “way as for
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a simply supported beam with two overhangs (sce Art. 2.2). When
the load unity is applied somewhere between points H; and H,
the reaction 4 will be equal to the ordinate ab multiplied by the
pressure Py exerted by the element 7,/ , on the beam ARH,. This
pressure varies linearly from 2, == 1 when the unit load is applied
at hinge /7; to zero when it reaches hinge A, and therefore the
influence line over the portion H,#, of the beam may be obtained
by simply connecting the ordinate & over hinge 7| with a point
of zoro ordinate at the hinge H,. Once the load has shifted to Lhe
right of the hinge I/,, the reaction at point 4 will equal zero* and
therefore the ordinates of the influence line from #, to D will also
equal zero. The similitude of triangles will permit us to find the
ordinates to the pertinent points of our influence line

gh 14-2 o5 SN - B
e whence gh=ik 5= 1x 5 = )
&1 whence @b = ik - o= 1 X 4= 0.5
3 =3 \MICE (1l == i T =Y.

Let us now conslruel the influence line for the bending moment
acling over section £ of our beam (Fig. 56.2d). When the load travels
along portion If 4D the construction of the influence line will be exact-
ly the same as for a cantilever beam with a built-in end (sec Art. 4.2).
Passing to portion H,C we notice that the pressure R, varics pro-
portionally to the distance of the unit load from point € reaching
z¢ro when the load is over this point; thercfore the influcnce line
over this portion will be represented by a line connceting point 4
with a point of zero ordinate at €. Point e under hinge #f, will be
obtained by extending this line until its intersection with the vertical
passing through this hinge, and the last portion of the line between
hinges H, and I, will be obtained by connecting poinl e with a
point of zero ordinale at the hinge H;. The similitude of triangles
permits the computation of the ordinate ¢f as follows

%——_;—g whenee ef = cd-%Z—?;:E X 0.48=0.96 m
[t is apparent thal the influcrnice line for any function in any section
of a mullispan statically deterininate beam may be conslructed
following the procedure outlined hereunder:

(1) The influence line corresponding to that portion of the heam
which contains the section under consideration is constructed exactly
in the same way as for a simply supported beam (with or without
overhangs).

+

*This foltows from the equilibrium of element #H,H..
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(2) The ordinate vbtained at the point where the beam member
containing the section meets with the adjacent one is then connected
with a point of zero ordinate under the second supporl of this laiter
element. The same procedure may be followed in order to obtain
the influence line over the more distant elements of the beam.

(3) The ordinates to the pertinent points of the influence line
may be derived from the similitude of triangles which constilute it.

The reader is invited to check the influcnce lines represented
in Figs. 57.2 and 58.2.

12,2, BDNDING MOMENTS AND SHEARING FORCES INDUCED
BY FIXED LOADS IN STATICALLY DETERMINATE BENTS,
KNEE FRAMES AND BEAMS OF POLYGONAL DESIGN

The determination of reactions arising at the supporls of statically
determinale bents and beams of polygonal design, the computation
of internal Jorces acting over their ¢ross sections and the tracing of
@, N and M diagrams are carried out in the same way a3 for ordinary
reclilincar beams. All the formulas, sign conventions and equiiib-
rium equations mentioned in Art. 1.2 remain valid. When dealing
with knee frames or other structures comprising vertical elements
it is good practice to decide beforehand which extremity of such
an element will be considered as the left-hand one and to mark
this extremity by some conventional sign (for instance, an asterisk),
The following examples will illastrate the construction of ¢, N and
M diagrams for structures in guestion,

5 Problem {. Required the @, ¥ and M disgrams for a beam ropresented in
Pig. 5%.2a.
gSafuﬁon, Having decided to consider the lower extremity of the element 4B
as the left-hand one, mirk it with an asterisk. The beam consisting of two ele-
menis, use expressions (1.2) through (3.2) tor the determination of the shearing
and normal forces and of the bending moments in each of these eloments,
Element I. The internal forees acting over a cross section a distanco z, from.
the npper eud of the element AL will he

(l=—3¥Y=—p NMo_3¥x=0
H I
_.w’mz;l-f: —(— Py = Pz,
Flement II. Tho internal forces acling over any section a distance z3 from
the left end of the element BC will equal

il =3xy =0 Nl_gx=p
L L

MY <~3SM= —Pa
L

Graphs ohtuined with the aid of the above expressions are reproduced
in Fig. 59.2b, ¢ and 4. 1t should be noted that the expressions obtained for M I
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and ¢! o not satisfy expression 4.2) of Art. 1.2 derived from the theorem ol
Zhuravsky. Lndued.
ant _ d{Pxyy

s d
dr;  dmy i

amt

dxi o

This ig due to the fact that in section £ of the beam positive values of the ahscis
sns were meitsured downwards, in other words, [rom right to left, while the rela-

tion ¢ = aIA.c rernains frue only when pusitive abscissas are measured [vom lefl

stead of

to right.

AP P
!
(@)l | k (&) Q graph
KXo 17 E
8 i & —F,
v greph
{c} "

gz P

YT\ Mai=Pa
(e}

ﬁ| )ﬁfx-p

Mgg = Fa
Fig 59.2

Lot us now cheek the cquilibrinm of joint B, Separating i1 from the
other parts of the struetnre aud applying at the cuts the internal forees computed
ahove we obtain the following equilibrium ciquatious (Fig. 59.2¢)

Ei"f}; A0 _-"II{HA —;—jfﬂc = — Pa+ Pl!.= 0
Y =0
2X=—Qpa+Npe=—P"+P=0
which shews that all the internal forces were computed correctly.
it shonld be remembered that equilibrivm equations must ho satisfied what-
evor the number of hars meeting at ene joint, provided all the external loads ap-
plied direetly to this joint are duly taken care of.

Problem 2. Required to Lrace the @, N and M diagrams lor a knee frame rep-
resentod in Fig. 60.2q.

T—BA2
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Solution. Choosing once again the lower ends ol the vertical elements as
their left-hand extremities, mark them with asterisks. Subdivide the knee frame
itself into four separate portions and write for each expressions (1.2) through
(3.2) giving the shearing and nermal forces and the bending moments.

Portion T

2
O =3V =gy NT—3X=0 M’=>:;W=qzlizi_=f‘z_'
L L f
Portion IT
2
Q= —5Y =0 NM= 33X =—qa M”=«-2M=—i‘2‘—
R R R
Portion TIT
QH— _3Y=P=ga; NV —3¥=_ya
R R
2
MIII: -—ERM= -—-%—-——P (Is—ﬂ'}=qﬂ (—(2‘-—— :3)
Portion IV
QIV=-—-2Y=—Q'£', NIF=—ZXa=--P=-—qa
R R
MV = —Z;:rf =gqa (xy———%) —Pat+M=qa (I’&-—%) —qat+4-gat=
a
= (s —%)

The diagrams obtained using the above expressions are represented
in Fig. 60.26, ¢ and d. Fig. 60.2¢ represents joint & subjocted to the internal
forces and moments acting at the cuts. It will be easily observed that all the
equilibrium equations for this joint aro satisfied:

2
SMp= —qal _i;_+‘:§." qa2=0

FX=+qa—ga=10 Y =ga—qa=0

Problem 3. Required to construct the @, N and M graphs for the statically
determinate frame represented in Fig. 61.2a.

Solution. Determine reactions R4, Ry and H 5 shown in Fig. 61.2q utilizing
the well-known equilibrium expressions

EMgp=R 204 Pa—q2aa=0
wherefrom remembering that P==ga wo obtain

2qal—qgal a
o= =07
2M 4= —1pla+ glaa-|- Pa=10
and thus
EX=P—Hp=0
giving
Hg=P=ga

T
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Mark again the lower ends of the vertical cloments by an asterisk as
in Fig. 61.2e considering them to [orm the left-hand extremities and subdivide
the heam into four portions for each of whicl tho following expressiuns are
readily obtained.

Partion [
()Izﬂ'l .NI-.-:—-.RA= —{J’—f:*-'. M =0
Portion IT
QM= —P=—ga; M= —ly=—q 5 M= — Pry= —qaz

giving for
=0 MT=0 audfor ap=a M= —gn?
Portion 11T
O =R, —qrs—q (-:2-— -‘fa) p NUo _pe g

2 2
J'l]UI=R_4x3-—Pa— 475 =q (-i—:—xa—ng—-@?—)
2

wien z;=0 o, L M e
when z3=g¢ (J”fz_-g_;_ MIT o gy
when wg=2a (J'”’=—% g MITT _ 9442

. : a i a
lhe shearing force Q1oy (—;;.-— :‘;) becomes nil  when :3=—-2—— and
3 ]

accordingly the bending moment will pass in this soction throngh a maxi-
mwun or a minimum

M __ a2 a2y 7
Mg (Gt — ) = — L a2
Lortion IV
QIV =Hp=yqa; NV = —Rp= "_"is_ e MV _ Il piry == qaz,
when z;=0 MIV __p
when x;=2¢ MW:ZMZ

The corresponding diagrams for @, ¥ and M are represented in Fig. 61.25,

¢ and
Problem 4. Required to consteuet the @, N and 37 diagrams for a beam repre-

sented in Fig, 62.2a.
Solution. Replaco the inclined load P by its vertical and horizontal compo-

nents P, and P,
Py=P, =P o5 45" =0.707P

and determine reaction R, which will suffice in the case under consideration
EM =R 4204 P LT0TL 4 P 0. T0TI =0
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wherefrom

—(L70TP, +0.70TP) L 1 707 —0.707

R, = 57 = 5 ®0.707P = —0.853°P

The negative value of this reaction indicates that it is directed downwards,
For each of the three portions of the beam the following equations giving the
values of the shearing and normal forces and of the bepding moments may be
now written as

X i
o b : :I g ;H Rmi &
D it T 4554
I - . | B \f iy %: 17 \ I:Fy Pﬁ
j__A 2L _1!: z é’\'\\%/ A
@ graoph 0.797P
S =N
4853P i
() ke 0.707P

Paortion [
Ql=R, = —0853p; N =0; M =R 2 =—0853Pz

when 2, =0 M'—0 when 2z =201 MI—_4.700P!
FBortion IT

Q''=pP,=0101P; N = _p,= —0.701P
MY — —P.070T1— P, (17071 — x5) = — 0.70TP (0.7071+ 1,707 — 5p) =
= —P {1,7071 —0.707z2)

when zp==0 M7= _1,707P when z.=1 MT=—pI
Portion 11T

Q”I-'-_"- P NIII=0; }H’I'Um: —-P.‘I‘a
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The corresponding diagrams are represented in Fig. 62.2b, ¢ and d.

The reader is invited to

(1) check the sign of the shear diagram represented in Figs. 59.2
through 62.2 using the rule mentioned in Art. 1.2 which stipulates
that the shear is positive when the axis of the beam must be turned
clockwise in order to superimpose it with the tangent to the bend-
ing moment diagram,

(2) check the @, N and M graphs represented in Fig. 63.2,

(3) trace the Q, N and M diagrams for the frames represented
in Fig. (4.2,



3- THREE-HINGED ARCHES
AND FRAMES

1.3. THREE-HINGED SYSTEMS

A three-hinged system consists of two plates (7 and I1), conneclod
together by means of a hinge (hinge C iu Fig. 1.3), with two-hinged
supports 4 and B resting on the ground. As the latter can itsell
be regarded ag another rigid plate, it may be said that a three-hinged

system consists of three plates connected
together by means of three hinges, these
hinges not Iying on one straight line.
We have seen proviously (see Art. 2.1
and Fig. 16.1) that conncctions of this
type are charactervistic of geomelrically
stable structures.

AP 18 When the plates I and f] consist of
L * curved bars the system is called a fhree-
Fl. 1.3 hinged arch (Fig. 2.3a); in the event

% these bars are straight or L-shaped, the

system will be called a three-hinged bent
or freme (Fig. 2,36 and ¢); finally, when these plates are throngh
stractures, the system bocomes a three-hinged truss or spandrel arch
(Fig. 2.3d).

The distance I between the centres of the hinges at the supports
is called the spar of the arch while the distance f from the centre
ot the crown hinge to the straight line passing through the former
two is called its rise (Fig. 2.34).

A threc-hinged system may or may not have a vertical axis of
symmetry. In the first case (Fig. 4.3) the central hinge € will lie
on this axis of symmetry and the hinges at the supports A and 5
will be at one and the same level. Nonsymmetrical systems may
have their supports at different levels (Fig. 3.3).

Tn three-hinged systems the reactions at the supports 4 and B
will be characterized by two parameters each—its magnitude
and direction or by any two components of these reactions,
sy, the vertical ¥V and the horizontal /. (Thesc two components
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are frequently referred 1o as the vertical and horizoutal
reactions.)

Fig. 2.3

Accordingly, the reactions of a three-hinged arch will be fully
determined by four parameters, for instance, the amounts of Lhe
reactions Hf 4, Hyp, V4 and Vy (Fig. 4.3).

Fig. 3.8 Pig. 4.3

These may be obtained from Lhe three equilibrium equations
of external [orces (including the reaclions) acting upon the system
and {rom a fourth equation, expressing that the moment of all
the external forces acting to the left or to the right of the crown
hinge about its centre must be nil.*

Thus, a three-hinged system is always statically determinale.

When a system of vertical loads acts on a three-hinged system the
horizontal components H 4, and H g of the reactions at the supports

4

*This is due 1o the fact that in any hinged system in equilibrium the moment.
about any hinge must be equal to zero.
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will not reduce to zero. Accordingly, the three-hinged systems
usually develop a thrust which must be absorbed either by the sup-
ports or by some other arrangement,

It will be shown later that the bending moments and shears acting
over cross sections of three-hinged arches are considerably smaller
than the corresponding stresses in a simple beam covering the same

[
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Fig. 5.8

span and carrying the same load. Therefore, three-hinged arches
are more economical than ordinary beams, particularly for large-
span structures.*

However, when the spans are small, three-hinged arches hecome
less desirable than ordinary beams, as their construction is more
complicated and the provision of hinges both at the supporls and
al the crown requires the use of more intricate arrangements.

In the three-hinged systems considered thus far both supports
were capable of absorbing a horizontal thrust. In practice it is
not unusual to encounter similar systems in which one of the hinges
is movable. In this case the geometrical stability of the system

+

*The first arched system for a large span was proposed in 1776 (i.e., some
hundred years before the creation of the science of structural mechanies) by the
ominent Russian engineer 1. Kulibin. On the basis of general principles of theo-
retical mechanics, he designed an arched wooden bridge 300 m long spanning
the whole of the river Neva at St. Petersburg. He was the first to determine the
interaction of oxternal forces and stresses in a three-hinged arched system and
to use a funicular polygon for the determination of the shape of his arch many
vears before this method became widely known, A huge 30 m model of Kuli-
bin's bridge was tested by a load of approximately 56 tons and approved by the
Russian Academy of Science. The great mathematician and member of the
Academy L. Ruler checked all the computations and drawings of Kulibin's
bridge and found Lhem perfectly correct.
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is ensured by ties established either at the level of the supports
or somewhat higher (Fig. 5.3z represents a three-hinged tied or
bowstring arch; Fig. 5.3b—a three-hinged arch with an elevated
tie; Fig. 5.3c—a three-hinged tied bent, and Fig. 5.3d—a similar
bent with an elcvated Lie).

2.3. SUPPORT REACTIONS OF A THREE-HINGED ARCH
f. ANALYTICAL METHOD

As has already been stated, when a system of vertical loads is
applicd to a three-hinged arch (Fig. 6.34) a vertical and a horizontal
reaction will arise at each of the two supports making [our reactions

{a)

Fig. 6.3

to be determined in all. Let us designate the vertical reactions by
V., and ¥V and the horizontal ones by 4 and I 5, respectively
(Fig. 6.3b).

In addition to the three equilibrinm equations supplied by the
statics for coplanar systems, a fourth equation can be used in the
case of a three-hinged arch, this equation expressing that the bend-
ing moment at the hinge C equals zero, or in other words, that
the sum of the moments of all the external forces acting to the right
or to the left of this hinge about its centre is nil

EZMp=0 or ZMc=0
L R

These four equations of statics will determine completely the
four reactions at the supports.

It is recommended to avoid as much as possible simultaneous
solutions of several equations with several unknowns. For instance,
in ihe case of an ordinary arch represcnted in Fig, 6.3¢ we may
first write the equilibrium*equation for the moments of all forces
about hinge B which will contain only one unknown vertical reac-
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tion ¥,. When this is known we may solve the equation D} M.=0

expressing that the sum of moments of all forces acting on the left
part of the arch about hinge € is nil, this equation containing the
reaclion ¥, which has just been determined and the unknown reac-
tion . We may then proceed with the solution of an equation
expressing that the monient of all external forces aboul hinge 4 is

Fig, 7.8

zero which will give us the value of reaction ¥ and then obtain
the magnitude of # , equating Lo zero the projection of all the
externat forces on the horizontal.

The compulations just described may be checked using the equa-

tions
ZY =0 and ZM,=0
R

TF the two supports were at different levels as in Fig. 7.3, the
equalion EMy, = 0 would contain two unknowns V, and 7.,
thus requiring the solution of a system of two equations with two
unknowns. This can be easily avoided if hoth reactions were resolved
into ecomponents one of which would follow the linc conmecting
the two supports A and B (Fig. 7.3b). When these components V7,
Vi, My and H; are determined, the vertital and horizonlal compo-
nents will be easily found using the oexpressions

Va=Va--Hasine; Vyp=Vp—Igsinc
Hy=Hycosa; Hy=1ITycosa

2. GRAPHICAL METHOD

The graphical determination of the reactions requires that the
resultants 2, and /7, of all the forces applied to the lefl and to the
right of the ecntral hinge should be found in the first place, The
reactiong induced by each of these resultants B, and B, will then
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be determined, their summation giving the final value of the reac-
tion required. We may start with determining the reactions at the
support caused by the application of the force /2;. In this case the
reaction at the right-hand support #; must pass through the hinge
at this support and the hiuge at the crown (Fig. 8.3a) as otherwise
the right-hand portion of the arch which is subjected solely to the
reaction at B, and the interaction of hinge € could not remain in
equilibrium. Wilh reaction 4, arising at the left-hand support,
the arch as a whole will be in equilibrium under the action of three
forces Ay, By, 1.

Fig. 83

Theoretical mechanics states that three coplanar lorces acting
on a body in cquilibrium must necessarily concur at one and the
same point. The use of this theorem enables us to find immediately
the direction of reaction A, whereafter the force polygon (Fig. 8.3b)
will give us the magnitude of both support reactions 44 and 5,. The
support reactions A, and B, due Lo the application of the right-liand
resultant /2, will be found in exactly the same way (see Fig. 8.3a).

The method of superposition will enable us to obtain the resultant
reaclions A and B at both supports. For this purpose a line parallel
to the line of action of the reaclion A, will be traced through point 4
of a force polygon (Fig. 8.3b) and the magnitude of reaction .,
will be laid off along this line. The point @ so obtained will then
be connected with point 7, thus giving the magnitude of the full
reaction A at the left-hand support, the full reaction B af the right-
hand support being obtained by the same method. The vertical
and horizontal components V4, IT,, ¥V and # ; can be obtained
thereafter in Lhe wusual way.

The graphical method of determining the reactions at Lhe supports
of a three-hinged arch careying a number of vertical leads is illu-
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strated in Fig, 9.3. At the outset resultants f2; and A, are found
using the method of force and funicular polygons whereafter the
procedure followed does not differ from the one just described.

Problem 1. Using both methods described above determine the support.
reactions of a three-hinged arch supporting two vertical loads as indicated
in Fig. 10.3c.

Solution. 1. Analytical method. Replaco the support reactions by their com-
ponemts Vu, I, and Vp, Hp (Fig. 10.3%). In order to determine the magnitude
nfiVABequate to zero the sum of all the forces acting on the arch ahout
int
: EMp=V l—Py(l—n)—Py{l—ug)=0
whence

VAEP‘ {-’-—*fli)'g'Pﬁ(I—ﬂz)=M;n (1.3)

Here My is the moment of all the external loads about the hinge al the right-
hand support.
The magnitude of &, will be obtained [rom tho equilibrium of the moments
of all external forces acting on the left hall of the arch about the crown hinge £
2340=V451-*H.4)'— Py(ly—ay)=0
whencee .
Vali—Py (hi—ay) _ Mc
f f
Hore M ¢ is the moment of all the loads (oxeept of H 4) acting on the lefl-
hand portion of the arch about point C,
The vortical reaction Vp will be obtuined by summing up and equating
to zero the moments of all the external forces about hingo 4

IM s = —Vpl4 Paag4 Piay=0

HAZ (2»3)‘

whente

Pyay 4P M )
Vﬂz_i_!";_zfﬁ_g_f}_ (33)

Here M4 is the moment of all the loads about the left-hand support.
The last unknown roaction Iy will be found by projecting all the forces
on the z-axis
whence
Hay=Hp=1 (4 5)

The Iast formula shows that the thrusts arising at both supporis of three-hinged
symmetrical arches subjected to vertical loads are equal in size and opposite in
direction.

Substituting in equations (1.3) through (4.3) the numerical values of ail
the paramcters we obtain

__400—3)4-3(10—6) _ 28412

Va 10 =15 =4 tons
V3m4x3$axsz3 tons
h—4 (65—
UA=HB=H=-M=3 tons
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|
|ay=3m Pr=4t Pz=3£
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From the expressions (1.3) and (8.3) it will be observed that the vertical support
reactions of three-hinged arches carrying vertical Ioads alone have the same values
as the reactions of simply supported beams of the same span and loaded in the same
way (Fig. 10.3¢). The bending momoent at midspan of this beam being equal to
ij. the thrust at the arch supports may be obigined by dividing this bending
moment by the rise of the arch [seco equations (2.3) and (4.3)].

2. Graphical method. Using the schomatic drawing of the arch (Fig. 10.3d)
let us connect hinges A and B with the erown hinge €, extonding these lines
tlines I and IJ) to their intersection with the direction of forces Py, and P,,
respeetively, at points K, and K,. These points are then connecled direetly Lo
poinls 4 (line 717 and & (line 777},

[T T Th) ¢

I
|
|
|
[
|
|

Fig. 11.3

Let us now lay off Lo scale forces P, and Py (voctors 7-2 and 2-8) along a ver-
tical as in Fig. 10.3e. Force P; is then resolved into two components A,, B,
parallol to the linos IV and 7 (see Fig. 10.3d) for which parpose ruys 2-5 and
1-5 are traced through its ends, Forco P, is resolved in the same way Lhus ohtain-
ing aray 2-4 equal in amount to A, and parallel to the ling 7 and a ray 5-4
cqual in amount to B, and parallelto line f/1. Thereafter rays 4-6 and 5-6
are traced parallel to lines 2-5 and 2-4, respectively. Way 6-7 will he equal 1o
the reaction at 4 and ray 3-6 to the reaction at 2. The vertical and horizontal
components of those reactions ¥4, Vy and H,, Hp are casily found.

Problem 2. Dotormine snalytically the thrust of an arch represented in
Fig. 11.3 uniformly loaded over the entire span wilk an intensity 7.

Solution. Start with delermining the reactions al the supports using the
following equilibrium equations

2Mp=0 and EMy =0
In the case under consideration these equations hocome

SM =V 4l —ql __j.= 0
EMy— —Vpldql é.=0

whence

ydzvﬂuéqz

fn the caso of vertical londs alone the thrust H,=#Hp=7 may
be determined by equating to zero the moments of all external foreos acting
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on e Jeft half of the arch about the erown hinge C

I r 1
N, — R ¢ Ry S e S
-MII(_ Va 9 Hf—yq 3G u
whence

; ql2
I o e—
8f

Problem 3. Bequired te determine hoth graphically and analytically the
meactions induced at the supporis of the three-hinged arch represented in
Fig. 12.32 by an inclined force P = 5 Lons for cosa — 0.6 and sin o =— 0.5,

Fig, 12.3

Solution. 1. Analytical method. Tel us resolve the foree P into its vertical
and horizontal components

y= %0.8.=4 tons; Py=5x06=3 tons

The vertical reaction ¥V, may then be determined from the equilibrium
equation of the woements nboul point B

EMp =12V, —9P, +3P;=0
whener

WP, —8Py 34—y 27
A= = =——=2.25 ton
Va 12 12~ 12 i
The jreaction ¥y will [be obtained from the equilibrium of memnents
about poinl A

SM 4= —12V 43P, +3P=0

whenee

Ax34+3X3
12

We may mow determine the horizontal reaetion I7, equating to zero 1le

moments of all ferees acting on Lhe left half of the arch about the erown
hinge €

Vp= =1,70 tons

My =8V, —4H g — 1Py — 3P, =0
£

5—853
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whence
_ 2.25xb6—3x1—4x38

Z = —(.375 ton

Hy

The negative sign obtained indicates that the reaction 7, “is direcled
towards the left, To determine the reaction g lot us equate to zuro the sum
of horizontal projections of all the forces)

EX=IH 4 Py—Hp=0
Hyg=—0375-L3=2.625 tons

whence

2. Graphical method. Trace line 71 through hinges B and  until its intersee-
tion with the direction of force P at point X (Fig. 12.34). Point K will tlien be
connected by line 7 with the hinge A. Then lay to scale force P parallel Lo its
dircetion as shown in Fig. 12.3F and through ils ends trace rays 7-8 and 2-2
parallel to lines I and /7 of Fig. 12.3a, respectively. These two rays will repro-
sent to scale the reactions at the supports A and 2; their horizontal and vertical
components are A4 and Hp, ¥V, and Vp.

3.3. DETERMINATION OF STRESSES 1IN THREE-HINGED
ARCIIES

1. ANALYTICAL METHOD

The internal forces or stresses acting over the cross scclions of
a three-hinged arch consisl of bending moments M, shears Q and
normal forces N. They may be computed on the basis of Ioads and
reaclions acting to the left or to the right of the section considered,

We shall use the same sign conventions for the three-hinged
arches as adopted in Art. 1.2 [expressions (1.2) through (3.2)] for
ordinary beams, with the exeeption of the sign of the normal force
which in this case will be reckoned positive when producing a com-
pression.

In the computation of stresses auxiliary coordinate axis will
be used for each cross section considered, the axis of absecissas u
coinciding with the tangent and the axis of ordinates » with the
normal to the centre line of the arch at this section. The projections
of lorces on these axes will be designated by &7 and V.

With these conventions expressions (1.2) through (3.2) hecome

Q=3V=—3V
L r

M=ZM=—3M
L

i
N=3= 32U (1.3)
L r

In these cxpressions the moments will be reckoned positive when
they tend to turn the section clockwise, the components ¥ when they
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are directed upwards and the components U when they are directed
from left to right. Using expressions 1.3 let us determine the internal
forces acting over a cross section K of an arch represenled in
Fig. 13.3

Q= ELV =V, co89p—H sin@—2ZP, cosp—ZP,sing
L L
M= E}M =V x—HMH y— ZEJU (z—ap) —ZPx (y—yp)
. L
N=Z2U=V,sing ~H cosq¢—2P,sing+ZPscosq (2.3)
L L L

where & and ¥ = coordinales of point K on the centre line of the
arch
@ = angle between the tangent to the centre line
of the arch at point K and a horizontal
P, and P, = vertical and horizontal components oi force
P, respectively
2, and y, = coordinates of the point of application of
force P.
In the expressiong for @, M and /¥ the summation must comprise
the components #, and £, of all Lthe external Joads and forces applied

Fig. 18.8

to the arch to the left of section K. In the case of the arch represented
in Fig. 13.3 only one component ol force £y (Pyy, or P,,) will enter
into cach of these equations. Tt should be noted that the stresses
Q, M and N could be cxpressed with equal success using the forces
to the right of section K.

TF vertical loads alone are applied to the arch (Fig. 14.3a) all the
horizontal components P, are equal to zero, the vertical compo-
nents P, cqual P and the thrust #, = # 5 = H. In this case ex-

a8
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pressions (2.3} become
Q= (Vi—ZEF)cosqg— Hsing
L

M=V,x—2P(z—zx,)—Hy
L
N=(WV—ZP)sinqg+Hcosq
L

The expression (V,; — ZP) represents the shear Q" in the corre-
L

gponding section of an end-supported “reference” beam subjected

Vig. 14.4

to the same loads as shown in Fig. 14.35 and the exprossion
[Vaxr — 2P (x — 2,)I—the bending moment M9 in the same seetion
of Lhe same beam.*
With these designations the above expressions become
Q@ = Q0 cos p—IF sin
M. . M'—Hy
N - Qsing4- 4 cos ¢ (3.3)
+

*Q“might be called the beam shearing force, and M0 the beam bending
niement,
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Once the magnitudes of @, M and N have been delermined [or
a sufficient number of cross sections, the graphs of these [unclions
will be casily constructed. When vertical forces alone aet on lhe
arch, any of the three sets of equations (1.3), (2.3) or {3.3) may be
used, in other eascs use should be made of expressions (1.3} or (2.3).
Jt will be noted that in the event of a vertical loading each graph
may be obtained by the summation of two other graphs. For instance,
the bending moment diagram may be oblained by summing up

|
y! g=2t/m
i

Fig. 15.3

the bending moment diagram M?® for reference boam with the graph
of Lhe arch ordinates y multiplied by (—4), this illustrating very
clearly the extent Lo which the bending momenls are reduced in
the arches,

Problem 1. Reqguired 1o determine the reactions al the supports as well as
the bending moment, shear and novmal lorces acting over section K of a three-
hinged arch represented in Fig. 15.3. The centre line of the areh follows a conie
parabola given by the equation

A

G4 (12 —2) 3 7y P,
U‘";—ilf—ﬂ)"'—_ ixA(12—n)z (12—1)=z

1212 = g
The abscissa 2y of point K is 3 metres,
Solution. First determine the ordinate of point K

_(12—3)3
Sl

I =J muoetres

The tangent of the angle formed by the tangent to the centre line of the
arch and the axis of ahscissas will be given by the first derivative of Lhe
patabola

12—2r

tan g, =y’ = 3
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For puint X (z=23 metres) this tangent will be given by

12—2%3 2
tan [Fg=———9—><_!=§
The corresponding sine and cosine will be derived from the formulas*
: 2
T - L
Vi tan® gy SV,i L4
Ba
COs ipp = 4 =2 ).832

1
V1 tan2 gy -V/I_’_%

The freactions at the supports will be delermined using the [ollowing

equations
IMp=V 12— g6x9— Pcosa3—Psinad=0
whenco
I,,l“.=2><fi><9-+—8202.5-1—0.8(-'51'51 3:““.73 -

EY:I:VA— qGW—P sin o -Il- VBT-O

and accordingly
Vp=2%6-+8%0.866 —11.73 = 7.20 Lons

Zifc='|"dﬁ-—q6><3—h’ﬂ4=0
then
1.73x6—2%x18  34.38
4 T4
2X =M —Hp=-Pcoso=0

I,= =8.60 tons

leading to
Hp=8.60—8x0.5=4.60 tons

The bending moment in scclion K will amount to
M;;:Vda—ﬂﬁ—-rﬁx%-——o.% ton-metre

while the shear in the same sectivn will total
Qr=Vcosgp—H, sinpp—gdcosgp=0
and finally the noemal force Ny will he
Ny =V 4 sin gy -+ H 4 cos gp—g3 sin 5 =10.34 tons

Problem 2. Required to construct the diagrams of bending moments A7,
shears ¢ and normal forces N for an arch represented in Fig. 16.3« and fol-
lowing a coni¢ parabola whose equation is

y=3L 422
re

*Their values could also be found directly using appropriate tables.
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Solution, Let us determine fisrt the reactions at the supports V, and Vi,

3
Z.-lvtnuvdz_.‘,ﬁj_ X g L= Pb=0
o R VA"i‘VB—‘?T:‘_p=U

wlience

3 ]

Vay= T gl -.'—T £ =10 tons
i

V:r="}—-j’ 2=V, =6 Llons

The thrust 4 will be derived from the equation
l qt 1

TMA- ¥V —— = — =
dlfg.vAz P Hi=0
whence
74 ql2
l'"d. e
If = -———-E—--H— -6 tous

f
The arch cacrying vertical loads alone, exprossions (3.3) may he need for the
construetion of the ¢, M and ¥ graphs reijuired.

Fig. 16.31 represents a simply sapported roference beam loaded in the same
way as the avch and Fig. 16,530 anil d reprosents Lhe diagrams of the shears (U and
hending moments Mo, %ll further compulations are entered i Table 1.3, column
1 containing the ubscissas @ ol the points along the arch contre Jine taken at one
metre inerements, and column 2 containing the correspouding ordinates, calen-
fated using the exprossion

Af 12—
p=gpii—g ==y
Column 3 contains the values of tan @ computed from
6—
tan [P.--y-..ﬁ-?—é (1—2n)=2 =5

while the Tolluwing three coltnans contaln the values of , sin ¢ and cos .. The
values of 00 and M0 tabulated in columns 7 and 13 are taken dueetly from the
corresponding dingrams reproduced in Fig. 15.37 and d. Columns 8 throngh 12
contaia the products of the shear ¢ and the thrust # by sin q, cos ¢ anild the
ordinates of the centre line of the arch.

The last three columns of Table 1.3 {eolumns 14, 15 snd 10) conlain the val-
ues of ¢, M and N acting over the corresponding cross secticons of the arch. They
have been computed using formulas (3.3), which means that the magnitide of §
was obtained by summing up ciphees appearing in colurmns 9 and 10, the valie of
M —by sttming up ciplers n'f columns 12 and 13, and the value of ¥ —those
of columns 8 and 11

. The shear, bending momoent and normal force diagrams appearing in
Fig. 16.3e, f und g have been constructed using the data contained in the Tast
three columns of Table 1.4.% 1n these three diagrams the ordinates have been
laid off from @ horizontal axis; in addition the bending moment diagram
represented in Fig. 16.3% hag been constructed by laying off thesp ordinates
from the ¢nrved centee line of the arch.

L 4

* For convenience, difforent. scales have bean adopted Tor different diagrams.
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2. GRAPHICAL METHOD

'The graphical determination of internal forces ¢, M and N acting
over the cross sections of three-hinged arches is carried out by con-
structing the so-called funicular polygon ov polygon of pressure.

Fig. 17 3a represents a three-hinged arch loaded by forces P,
and P,. Only one force acts to the right and one to the left of the
central hinge € and therefore we need not bother about the deter-
mination of any resultants. The reactions at the supports 4 and A8
are determined graphically using the force polygon in Fig. 17.35.%

Fig, 17.8

Eet us proceed now with the construction of the funicular polygon
(I"ig. 17.3¢} corresponding to the force polygon already menticned.
For this purpose we shall extend the direction of reaction A4
(Fig. 17.3¢) until its intersection at m with the direction of force
£y. Through the point of intersection we shall trace the string 77’
parallel to ray I7 of the force polygon, this ray representing the
resnltant of the reaction 4 and the load P,. let point n be the
intersection of the string II” with the line of action of the load
P, Through this point we shall trace the string 711" parallel to ray
111, the latter being the resultant of reaction 4 and loads Py and 5.

+
*See Fig. 8.3 of Art. 2.3 for explanation.
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Tf all the operations were carried out correctly, the string fI
representing the resultant of forces 4 and P, will pass through
the centre of hinge € whilst the string 777" whose divection must
coincide with the divection of the reaction at B will pass through
the pin of this support.

The funicular polygon I'-II'-ITl" (Fig. 17.3¢} is frequently
termed polygon or line of pressure as each string coincides with the
direction of the pressure exerted by one portion of the arch on the
other.

Hence these strings will coincide in direction with the resultant
of all the forces acting on the arch to the lelt or to the right of the
section considercd.

'This may be illustrated by Fig. 17.3¢ where to the left of seetion
J-ky there is only the reaction at the support A and thus string
I’ of the funicular polygon will coincide with the dicection of force
A which is the resultant of all the forces to the left of the cross
seclion considered. Passing to section %y-k, we note that there are
already two forces 4 and P, to its left. At the same lime string /1’
represents the resultant of these two forces. In the case of section
ka-ka there will be already three foreces A, Py and P, to its lefl,
their resultant passing through the point of intersection ol string
I with force P, as string II' is itself the resullant of forces A
aud P4. Therefore, this resultant coincides with string J/I'.

Accordingly, any line in the pressure polygon AmnD represenis
the direction of the resultant of all forces applied o the left {or lo the
right) of the section under consideration. The magnitude of this result-
ant may be determined with the aid of the polygon of forces.
Thus, in Fig. 17.3b the resultant of forces A4 and P, will be given
by the length of ray J7 measured to scale.

Thus, the polygon of forces and the pressure polygon permit the
determination of all the stresses in any cross section of the arch.
For instance, the bending moment may be obtained by multiplying
the resultant by its distance to the centroid of the section undor
consideration.

In section ky-k, (Fig. 17.3¢) the bending moment A will thus
equal Ae where ¢ is the distance to the line of action of lorce A meas-
ured along a perpendicular dropped on this line from the centre
of gravity of the cross section.

In order to determiné the shear and the normal force acting over
section %,-%, the resultant of all the forces to the left of this section
(ray I or reaction A) must be resolved into two components, onc
parallel to the tangent to the arch centre line at this section (ray
6-1) and the other (ray 0-6) normal to the same line. It is clear that
ray -6 will represent the shear @ and ray 6-1 the normal force N
in our seclion.
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The line of pressuve provides a very clear picture of the work of
an arch. Thus, Fig. 17.3¢ shows that the forces acting on the arch
tend Lo increase the curvature of its right-haud portion where the
reseftant is below the centre line, while the curvature of the lefi-
hand portion will deerease,

When a system of vertical loads Py, £,, P,, ete., acts on a three-
hinged arch, the construction of the pressure line will be carried
oul in the lollowing sequence:

(1) first find the resultant R ol all the external loads applied to
the left of the erown hinge;

(2) next find the resultant 2y of all Lhe external loads applicd
to Lhe right ol the same hinge;

{3) then delermine the reactions A and B induced by the resuli-
anls £y and £y just determined;

(4) linally c¢onstruct the force polygon and the line of pressure
taking inlo consideralion all the separale vertical loads P,

There is always only one polygon or line of pressure corvespond-
ing to any sel of loads applicd (o a three-hinged arch. When (hese
lnads are distributed the line of pressure becomes a smooth curve,

If the centre line of Lhe arch were to coincide with Lhe pressure
ling pertaining Lo any particular set of loads, these loads will indace
neither bending moments nor shearing forces in the cross seclion
of the arch which will then be subjected to normal forces alone.
This provides substantial advantages especially for masonry or
conerele arches. Hereunder we shall designate by the lerm rational
snch a conliguration of the eentre line of an arch which will coin-
cide with the line of pressure corresponding to the dead load.

It should he noted that the line of pressure can alse he obtained
analytically, For this purpose it would be necessary Lo lind Lhe
magnitude of the bending moment A and the normal force & in
a number of cross sections and then determine the ececentricity e
M
j\‘_r.

[Maving laid off Lhese eccentfricities along the normals to Lhe
centee line of the ageh, the line of pressure will be oblained by sim-
ply connecling Logether the points obtained. The construction of
a line ol pressure for an arch whose reactions were delermined in
IMig. 9.3 is illustrated in Fig. 18.3. Tig. 19.3 represents the determi-
nation ol internal forces acting over section % of this arch.

When vertical loads alone are applied to the arch, the horizon-
tal component ol any resultant of forees to the right or to the left
of a section will always equal the thrust 7.*

+

*Each ray of the polygon of forces (Fig. 19.38) has the same borizontal
component equai to this thrust,

using the formula ¢ -
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fc!
Fig. 19.8

Fig, 20.3
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Therefore, if the resultant of all the forces acting to the left of
any cross section were resolved into its vertical and horizontal
components S and /7 (Fig. 20.3) the bending moment in this sec-
tion would be equal to the thrust /7 multiplied by the distance
measured vertically from the centroid of this section to tho line
of pressure (the vertical component inducing no moment in this
section}, Accordingly, when vertical loads alone are applied, the ver-
tical distances from the centre line to the line of pressure represent at
a certain scale the bending moments acting over the corresponding

Fig, 21.3

sections of the arch. In olher words, these dislances constitute a dia-
gram of the bending moments with the sole difference that in this
caso the diagram will be sitnated on the side of the compressed
fibves, Fig. 21.3 represents such a diagram pertaining to the arch
shown in Fig. 19.3a.

Problem 3. It is required to construct graphically the pressure line of the
arch analyzod in Problem 2 (see Fig. 16.3} and to determine the stresses in sec-
tion & indicaled in Tig. 22.3a.

Solution. Let ns replace the uniformly distributed load applied to the left
half of the arch by 6 concentrated forces amounting 1o 2 tons cach and acting at
the centres of 6 equal portions each 1 metre long. After that let us construet the
force polygon using the values of the reactions computed in Problem 2 and the
Joads actually applied and let us trace the rays I through VIIJ as in Fig. 22.35.

Drawing (as in Fig. 22.3a) a series of strings parallel 1o theso rays we +hall
ohtain a polygon of pressure. The aren between the contre line of the arch and the
line of pressure shaded vortically in the figure just mentioned represents tho
diagram of hending moments M. In many respects it is analogous to the diagram
obtained analyticully in Problem 2 and represented in Fig. 16.3k, hut diflers
by the fact that in the Jatlor case the distances had to be measured noymally
to the centre line of the arch and not verticaliy (1his was reflected by a hatching
normal to the centre line), Moreover, the diagram is located next to the com-
pressed fibres instead of the extended ones as was the case in Fig. 16.3%. Together
with the scale of lengths and forces an additional scale to which the bending
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moment ordinates should be measured in the geaph is indicated in Fig. 22.5.
This latter scale is obtained by multiplying the scale of length by the magnitude
af the thrust equal in this case to 6 tons.

At puint & the hending moment wili be obtained hy measuring the correspond-
ing vrdinate in the graph which furnishes a value of three ton-metres. The
shear in this section wifl be nil as the tangent 1o the centre line of the arch is
parallel Lo the polygon of pressure, whila the normal force Ny is equal to the
vay IV (Fig. 22.38), i.e., to 7.2 tons.

4.3, MAXIMUM ECONOMY ARCHES

As stated above, we shall consider that a three-hinged arch pro-
vides for maximum economy if its centre line coincides with Lhe
line of pressure of all the dead loads acling on this aveh. In that

Fig, 23.3

case these loads will produce uo bending in the struclire. 'lLuL u
and 1 be the ordinates of the arch centre line and of the line ol pres-
sure, respeclively. These ordinales are a certain function of »

y=f(x) and n=q ()

Il the centre line of Lthe arch were to provide for maximum econ-
omy as defined ahove, we should have

y=n
Let us esamine the case of an arch subjected Lo vertical loads
only (Fig. 23.3). The equilibrium equation of the moments of all
forces lying Lo the left of any point & on the line of pressure
will be
My=V og—Hn—2P (z—a)=10
whence
_ Var—ZEP{r—u)
= ®E
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It will be moted that the numerator in the last expression
is equal to the bending moment in the corresponding seclion of
the veference beam, i.e., to M%, and therefore

M.
=3

Substituting this expression in the equation y=m we obtain
the following expression for the centre line of an arch of maxi-
mum egconomy
MY
W=

Consequently, in the case of vertical loads maximum cconomy will
be achleved if the arch cenire line jollows the bending moment dingram
of a simply supported beam.

Problem. Assume that a three-hinged arch carries a vertical load of intensity
g uniformly disteibuted over the whole of its length, the span of the arch being I,
its rise f and the central hinge being situated at the crown. 1t is reqguired to
doteemine the configuration for the contre line of such an arch, which would
previde for maximum economy.

Solution. To =olve this problem we shall use the cxpression

My
V="
In the present case
;‘I-f'gl_=ﬁx2£- z—qa--_j—m-{;—x {l—a)
l
W 0
=t _"2 (; ___l_) T ol
SR 21 ¥
whence
T U=
D= (i—x)=

R T A T
i.¢., the centre Jine of the arch must fellow a conic parabola.

H5.3. DESIGN OF THREE-HINGED ARCHES SUBIECTED TO
MOVING LOADS

1. INTLUENCE LINES FOIL ABUTMENT REACTIONS

Let us assume that a three-hinged arch carries a unit load P
applied a distance x from the left-hand abutment (Fig. 24.3a),
and let us write the equilibrium equation of the moments of all
the forces about the support pins

SMg=Val—1(l—x)=0; EMs= —Vpl-+12=0

9—854
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Solving these equations for V, and ¥y we obtain

l—z x
Va= 7 V3=T

It will be observed that the expressions for ¥V, and V, are the
same as those for the reactions of a simple beam oblained in

17
7 ; A
4 | 5
Influence \line for Vi

|

|
i
| |
|
|

I
i
Influence '|£.:'ne for Vg [

fel

Fig. 24.8

Art. 2.2, This means that the influence lines for V4 and ¥V, do not
differ from the influence lines for the support reactions of a simple
beam; these influence lines are represented in Fig. 24.3b and c.
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T ]
the corresponding influence line will have the same shape as that
for the beam moment M differing from it only by a constant factor

—}». This influence line is shown in Fig. 24.3d. In casc I, = I, — ~

Since the thrust /7 is determined by the equation /7 L

]

the vrdinate of this influence line at a section passing through the
1

crown equals i

2, INFLUENCE LINES FOR INTERNAL FORCES

As a preliminary step, we shall examine the methods of deter-
mining the so-called neutral points, i.e., the position of the points
of application of a load which will render the internal force {bend-
ing moment, shear or normal force) nil at the section & under con-
sideration. Denoting the stresses acting over this cross section

P=i

Fig. 25.3

by My, Q4 and N, we shall say thal the load is applied at the neu-
tral point when the value of the corresponding stress and therefore
the ordinate to the corresponding influence line become nil. IL is
obvious that when the line of action of a force passes through one
of the abutment hinges, all the stresses al any section of the arch
will be nil. In addition, there are other neutral points on the arch
which are of great interest for us. Thus, il a load P is applied at
point F,, of the arch represented in Fig. 25.3 the bending moment
in section & will reduce to zero for the resultant of all the forces
to the left of this section (i.e., reaction A) passes through its cen-
troid. Accordingly, point F,, will be a neutral point in relation
to the bending moment acting over section k. Point #,, will lie on
the vertical passing through the intersection point F of lines A&
and BC.

If we consider the arch shown in Fig. 26.3, the bending moment
in section & wonld reduce to zero only if the load P were applied

HEd
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at peint F,, to a special bracket fixed to the arch belwecn section
& and the crown hinge, for in this case the direction of reaction A
would again pass through section k. However, il no such brackel
existed, there would be no real neutral point in relation to the
bending moment acting over section k. In effect if the point of

P=1

Fig. 26.3

application of the load were transferred upwards, so that the load
would act dircetly on the right-hand portion of the arch the diree-
tion of reaction A would alter, Lhis reaction passing throngh the
hinges A and C, and therefore the bending moment in scclion k
would no longer equal zero.

Fig. 27.3

Denoling by u,, the abseissa of the neutral point pertaining to
the bending moment in section & (see Fig. 27.3) and using the si-
militude of the triangles AFF; and BFF; we obtain

S T
FF =y, tan o= tn -ﬁ-

I —tm) |

o= !
FTy = (I— i) tan p=""—7"
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Thercfore
Umbh __ (_I_Hm) f
xy Iy
whence
o Hxp ;
Um = alo+2x] (5.8)

This expression permits the analytical delermination of the abscis-
sa u,, of the neutral point or, in other words, of the point where
the influence line for M, will pass through zero.

In order to determine the neutral point corresponding to Q,
(Fig. 28.3) a line AF must be drawn through the centre of the hinge
at the support A (this line being parallel to the tangent S-S at
point % to the centre line of the arch) and the intersection of this
line at point # with line BC must be found. If a load P were now
applied at a point F, lying on the same vertical as point F, the
shearing force Q@ in section & would reduce to zero, for there would
be only one force acting to the lelt of section & and this force would
be parallel to the tangent through this section. At cross section
k; of the same arch (Fig. 29.3) the shear would reduce to zero only
if the load P were applied to a bracket fixed to the arch between
this section and the crown hinge, for the point of application of
this load falls on the vertical passing through the intersection of
the lines AF and BC. From Fig. 30.3 it is clearly seen that

F}—’, =g lan gy
TRy = (1—ug) tau p
Therelore
ug tan gp = (I—uy) lan fi
whenee
I tan p
tan B4-tan 7z

This expression permits the computation of the position of the neu-
¢ral point for the shearing force in section k.

The normal force N in section % will become nil when load P
is applied at point F, (Fig. 31.3) lying on the same vertical as
point F, Lhis point being determined by the intersection of line
B(C with a line AF parallel to the normal to the arch centre line
at section k& and passing through the hinge A. From Fig. 31.3 we
note that

(5.3)

uqﬂ

FF = —ugcotqy
and

FIy=(l—up) tan
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Fig. 28.3 Fig. 29.8
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whence
— Uy col @p = (I —uy) tanp
and accordingly
[tan f}
tan p—cot gy

= (6.3)

This last formula permits the determination of Lhe necutral point
related to the normal force & in section k.

When the value of the neutral point abscissa obtained from for-
mulas (4.3), (5.3) or (6.3) is negative it means that this point lies
to the left of hinge A.

Let us now examine different methods of constructing influence
lines for My, Qp and Nj. As will be seen from expression (3.3), the
bending moment acting over section & of the arch represented in
Fig. 32.3¢ will amount for any position of a vertical unit load to

My=Mi—Hyx

This means that the influence line for M may be obtained by
summing the influence line for the bending moment Mi at the
corresponding section of the reference beam (Fig. 32.3b) and that
for the thrust /, all the ordinates of which have been multiplied
by a constant factor equal to (—yz). These two influence lines are
shown in Fig. 32.3¢ and d while the influenco line for the bending
mowment in the arch obtained by their summation is represented
in Fig. 32.3e. It is clear that the point of intersection d of lines
a,b and ab, oust lie on the same vertical as the neutral point F,,,
this providing a rapid check on the accuracy of the influence line
obtained. Vig. 32.3f represents the same influence line, with the
only difference that its ordinates have been laid off directly from
the z-axis.

It may be shown that the area under the inflluence line for 1,
will reduce to zero for any section & of a unilormly loaded three-
hinged arch whose centre line follows a conic parabola. Indeed,
the hending moment in any section of such an arch will amount
Lo zero (see Problem in Art. 4.3). If we were to determine the mag-
nitude of this bending moment using the influence line we would
use the equality M, = ¢Q, but as M), is always zero, (he area un-
der the influence line £2 must also reduce to zcro.

For the construction of the influence line for the shear @
(Fig. 33.3a) we may use the first formula of the set of expressions
(3.3), viz.,

Qr= Qh cos g — H sin gy

where Qf is the shear in the corresponding section of an end-sup-
ported beam of the same span I (Fig. 33.3d).
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This expression shows that the influence line Q; may also be
obtained by the summation of two influence lines, the first for Qi
all the erdinates of which arc multiplied by a constant factor cos @p
and the second for the thrust H the ordinates of which are multi-
plied by (—sin ;). The influence line for (}; obtained in this way

Fig 33.3

is represented in Fig. 33.3¢c where abkk.a is the influence line for
@h cos @ and the triangle ach is the influence line for H sin @s.
Point d in Fig. 33.3¢ must fall on the same vertical as the neutral
point F,.

The same influence line is shown in Tig. 33.3d with the only differ-
ence that its ordinates have been laid off directly from the z-axis.
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In order to construct the influence line for the normal force N,
for cross section & of the arch we shall use the last formula of ex-
pressions (3.3)

Ny =Qhksin g - H cos gp

Summing up graphically the two components (Q% sin ¢z and

H cos @x) we obtain the influence line for N, represented in

|
|

|

L al R
|

l ! 4 -L-—] & —
gl -
(&) ih\_:\"lmh._ iwﬂ’; {l;’:?f!uence lire Yor Nki
| i Ty Ik |
Jokimeg lfa_l. o
..
| 4
| | !
[ ¢ 4 | £
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IEn -
L4 i
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" | l‘ /nﬂwmllme for ¥, F
F 1 ' |
L, A |
A AN
()| i@ N P \ |
Jl | gj Wi l I\ { f
‘.}J| 1 o “_1 il ! Lyt ﬁb
]
Fig. 3.3

"ig. 34.3b. Here ablik,a is Lhe influence line for Qf sin ¢, and the
triangle abe represents the influence line for H cos q,. Lines a;b
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and ab, must intersect at ¢ in the vertical passing through the neu-
tral point F,.

The positive ordinates to line da, represent the values of
QF sin @z when the unit load P is applied to a bracket shown in
Fig. 34.3a while the negative ordinates to line da (plotted also
above ab) represent the values of H cos g, for the same position
of Lhe load. In this case Lhe normal force N acting over section Ik
will be obtained by subtracting the ordinate y, from y, and will
be equal to myms,. A corresponding influence line with its ordinales
laid off directly from the axis of abscissas is presented in Fig, 34.3c.

Preliminary determination of the neutral points would allow
direct construction of the influence lines My, @ and V. This meth-
od has received the name of the neutral point method. The pro-
cedure to be followed miay be ecasily derived from the examination
of the influcnce lines shown in Figs. 32.3f, 33.3d and 34.3¢. For
instance, il it were required to use this method for Lhe construc-
tion of the influence line for M, procced as follows (see Iig. 32.3f).

(1) Lay off along the vertical passing through the left-hand support
{provided the section under consideration is in the left half of the arch)
the abscissa of section k, i.c., the dislance zp.

(2) Mark the neutral point F,, on the x-axis.

(3) Connect the ordinate xy over the left-hand support (point ay)
with the projection of neutral point (point d) on the x-azis (line a,d).

(4) Find the point of intersection of this line with the vertical pass-
ing through section k (point k).

(5) Connect k, with the point of zero ordinate at the left-hand sup-
porl (point a).

(6) Find the point of intersection of the line a,d with the vertical
passing through the crown hinge (point ¢i).

(7) Connect point ¢, with the point of zero ordinate over lhe right-
hand support (line ¢,b).

Problem. It is required to construct the influence lines for Mx, @y and Ny»
ucling over section % of a three-hinged parabolic arch dealt with 1in Problem
2 of Art. 3.3, and to determine with the nid of these influence lines the siresses

induced in this section by the system of loads indicatedin Fig.35.3a, The param-
eters of point % are

Ip = =9 metres; tan gz =--123~ i sin iy =10.555; cos gp=10.832

Solntion, Determine graphically the position of neutral points F,. Fy,
and Fn as well as their abscissas wup, wg and w, and check the values
of these abseizsas using formulas (4.3), (5.9) and (6.3).

_ 12x4x3 ) _A2X4B _—
um—m—-d.g inetres Hy= m—sﬂ mebres
A
u __1_2__><_*"_6_= — 9.6 metres

mTA6—2
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The construction of the influence lines required may now be carried out as
follows: seale off on the vertical passing through the left-hand support the leangths
ZR, ¢0s Ty and sin ¢, asiondicated in Fig. 35,3%. cand dand connect the ordinates
abtained with the projection of the neutral point on the z-axis. After that find
the intersection of the vertical passing throngh the crown hinge € with the lines
just oblained. Connect this point of intersection with the point of zero ordinate
at the right-hand support. Find also the point of intersection of the above line
with the vortical passing through section k. On the bending moment influence
line this point is connected directly with the zero ]imint at the left-hund support,
while in thoso for the shear @, and for the normal force Ny parallel to the line
determined in the first place should be traced through the left-hand support
until their inlersection with the vertical mentioned above. Applying the laws
of similitude to the trinngles involved, we may now determine fthe ordinales to
tha pertinent points of the inflnence lines, the areus under Lhese lines and the
internal forces induced in =ection & of the arch by the given system of loads.

(a) Influence line for M,

Fylp  Mm—2u,

Ty Um
whenee
Frkp=— 2 o —n) _ 3G8—3) _y 135 metres
i 4.8
ab Tk
B —1ttyy Um —Ih
whenee
— —— =ty B—4.8
= o Ky =1.125 — = —1). ]
ab ko e 1.125 % TR 0.75 metre

E'Egy-;f i % == —(1.375 metre

The area under Lhe influence line corresponding to the distributed load
egnals

=2.25 squpre metres

s 1.125%48  0.75(6—4.8)
Y= T 3

Accurdingly, the bending moment My will amount to
My =gol 4 Py =2x2.25—4x0.375=3.0 ton-metres

(b} Fnfluence line for Qp

LTI R S L .. YY) R 63 0.832=0.416
L"'I_rk iy 6

Fakg == €0 (b, — hghy = 0.832 - 0.416=0.418

V4163 04163
yg =0; l'l'lgl‘_'- 2?( + ‘Zx =

Qn=qud+ Py =20+4x0=0

0
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(¢} fofluence line for Ny

Fehg sy —— 319.6 =
———=——" whenee lghs = sin gp = — 0505 =0.728
Iy — iy, — Uy RER i — Uy s 9.6 x 0

k-,-ka_kskg—emq*hz(}ﬂai 0.555 == 0,173

aby mSiIIqZI‘ wen T _b—un _ B4-0.4 55 = () G0
Toeg ™ whenee albl_-L—_H Sin g =-—p—e— X 0.555 = 0,402
—— XN 0,902 =
adi=y, =__“i;" = 0451
w 01733 07280002 -
o =QATSXS T LONR o, s

Np=qa 4 Py, =2 2.705+4x0.451 =7.21 tons

The magnitudes of M, @) and N, just found coincide with those compuled
ine Problem 2 of Art. 3.3 (Table 1.3 ancl Fig. 16.3)

6.3. CORE MOMENTS AND NORMAL STRESSES IN THREE-
HINGED ARCHES

In any eccentrically loaded bar Lhe normal unit stresses reach
their maximum and their minimum in the outer fibres of the cross
sections and, provided the material follows ITooke's law, their mag-
nitudes muy be ohtained from thoe cquation

i
s

where IF = area of thie cross section
W = its resisting moment

N and M = normal force and bending moment acting over the
seclion, respectively.

It is agsumed that both ¥ and M act in a plane passing througzh
one of the principal axes of inerlia of the section and normal to it.

When a moving load is applied to the arch, the use ol the above
lormula would require that both the influence lines for & and W
should be used simultancously, these influence lines having au
entirely different configuration and one of them possessing bolh
posilive and negative portions. It is therefore expedient to Lrang-
form the abhove-mentioned formula so that it should consist of one
term only.

‘I'his may be cobtained by the following procedure. Lel ug firsi
find the components N and @ of the resultant R of all forces acting
to the left of the section involved and passing through a point s
thereof (Fig. 36.3). Let us then apply at the extreme upper point
of the core of this section (say, point k;) two normal forces ¥ equal
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in gize and opposite in direction which will balance each other.
As a result we shall have three forces N acting over this section
which may be replaced by a moment equal to &N (¢ ~ ¢5) and by
a normal force N acting at the upper edge of the core. In this case
the unit stress at the boltom
fibre of the section will be
given by the formula

__ Niedep
Om = ]'Vm

Normal forces applied at the
upper limit of the core pro-
duce no stresses in the lower
fibres of the section. The prod-
uct N (e 4+ ¢;) represents the

X

| ;
| fafluence ling
I for ME

E'}_‘ T Lo

1
I
i
; influence | c.c'ne

Ko

{d)

Fig, 86 3 Fig. 87.3

moment of the normal force applied at point s of the section about
the upper point of the core ky and will be hereafter called the core
moment. The core momenl difiers from the ordinary hending moment
by the fact Lhat its computation requires that the distance of
the forces (to the left or to the right of the section) should be
measured not to the centroid of the sectien but to the upper or
the lower point of its core.

The normal stress at point n may be determined in a similar
way, only in this case the moment of external forces should be
taken about the lower core point r and the appropriate resisting
moment W, should be used in lieu of W,

Nie—c
Op = {w'n 2)_
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Thus
M M5
LI 1 T he
O = T and o, =

whero My, = moment of external forces (to the right or Lo the
left of the seclion) about the upper core point k,
M}, = moment of the same forces about the lower core point k,.

The above two formulas are monomial and therefore they lead
to a quicker and simpler determination of the maximum normal
unit stresses in the cross scctions of an acch
carrying a moving load. As for the influence
lines of core moments they are conslructed in
exaclly the same way as those for the bending
moments.

The influence lines for the core moments and
for the bending momenl in,seclion & of a three-
hinged arch are represented in Fig. 37.3, Lhese
influence lines having been constructed wusing
the neutral poinlt method. The small triangles

Fig. 38.3 shaded black on the influence lines for the core

moments just next to the centroid are due to

a verlical rise in the influence line for the normal force at this point

(see Fig. 34.3). In practice these areas arc usually ignored due to
their insignificance,

Using the core moment influence lines, let us now solve the l[ollowing
problem: which part of the three-hinged arch represented in Fig. 37.3¢
should be loaded {(uniformly or by a train of concentlrated loads)
in order to obtain the maximum tensile stresses at the extrados of
gection k. It is obvious that the extrados will be extended only
when the resultant of all external forces (the right-hand or the left-
hand ones) passes below the core (Iig. 38.3). In that case the moment
of Lhe resultant about the core point &y will be negalive. Conse-
quently, the load orloadsshould be placed over the negalive portion
of the influenco line for the core moment My, . The loading of the
positive portion of this line would cause the compression of the
extrados of the arch at section k.

7.3. ANALYSIS OF THREE-HINGED TIED ARCHES AND
BENTS

In the preceding articles (2.3 to 6.3) we have passed in review
the methods of stress computation applicable to ordinary three-
hinged arches without ties. Let us now envisage the ticd (hree-
hinged systems and in particular three-hinged arches and benls.
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Certain peculiarilies of these structures introduce a nnmber of
changes in the stress computation methods described above.

Fig. 39.3a represents a bowstring arch frecly supporled at 5,
the tie precluding the horizontal movement of the abutment hinge
and therefore replacing the horizontal constraint al this point.
Accordingly, computation methods pertaining to ordinary three-
hinged arches (Fig. 39.34) will permil the determination of all

Fig, 89.8

the stresses in this particular case. Stresses in the cross seclions
of both arches will be exactly the same and Lthe internal lorce in
the tie will be equal 1o the horizontal thrust 7/ ,. The verlical
reactions V4 and ¥V, will also remain exactly the same. Thus,
the influence lines for Lhe abatment reactions and the siresses

(b}

Fig. 40.3

acting over the corresponding cross sections of a bowstring arch
will not differ in any respeet from those of an ordinary three-hin-
ged arch.

Let us now consider a three-hinged arch with an clevated tie
DE as shown in Fig. 40.3e¢. We may replace the tie by two hori-
zontal forces N, applied at points D and £ and equal to the ten-
sion in the tie (Fig. 40.3b). The three abutment reactions V,, Vy
and /T, may then be determined as usual with the aid of three
equilibrivm eqguations of all external forces applied o Lhe arch.
These equations do not contain the above mentioned forces Ny,
whicll balance each other; their magnitude may be obtained by
10833
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equating lo zero Lhe sum of all the moments of the external forces
applied to the left {or to the right) half of the arch about the crown
hinge €. The stresses in all the cross sections of the arch as well as
the methods of constructing the corresponding influence lines may be
derived from Lhe expressions (1.3).

yl g =2t/m Pedi
- b=3m .
¢ influence [ire for §y
a2 T LHMS @ 2
LAcomibiee™ | Mue < usr gats
AMERE S i S sl
- 4 3 HB’ e At f i
! (i Finfluence i e M7
e | L s
— T
e L=12m ‘ "
> jinf tuee dine
g=2t/m lp:a for Ky, iy-r+d)
£ AT B infleence Line for M,

c

e | " () T

Influence line for v

3 Adamf
fet s
L fims IIEI’III““I'II“IIIII.-.-_

§ Infiugree line for Q.° sin
” () ORI 4 Iy
Influence iine for vy sg; 5?= iy . a2
i) T ; =1 585 L —
AIE d Ry
L @133 . 'ﬂ“llo
: " . i
i ||l PR Ty, tnftvency tine ", it e

for Wy, w0559,
Influence a2 for W,

(k)
f) Ffﬁn%=&&3’f
cor ggk,r—--w_ i inftirerce Lire for
=04832 Nese 50140
or 92 cos o,
Fig. 41.8

Problem 1. Given the arch with superelevated tie (Fig. 41.3q) following a conic
parahola defined by the equation

y:-‘!:—i- {l—2)z

Required to determine the reactions V., Vg and H 5, the tension in the Lie
Niieo the internal forces My, Qn and N and to construct the influence linos
for all these forces and stresses.
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Solution. The veactions are delermined from the equilibvivin equations of
all the external forces acting on the arch

. 3
x.w,3=v,._z.-q%Tz—pb=o
EMA=%;H%+PH—M—VﬂzO
-‘.‘JXZ"_}IJ';=0

These equations yield

z 3 Pb 3 43
U e o L S G ain L
Va 3 gl 7 g 2% 12} v 10 tons
.l __b“)_zmz __3_)_.
Va= g P (1 =" 5 +4 (‘l—iz = lons
Hpy=0
The tension in the tie is determined from
I /]
2M=V 45— Neivt —-g=0
whence
12 2122
¥eie= (¥ Lt M TN E i
Niie ) 3 P T ] = Nk

where ML is the hending moment acting over section € of a simple heam shown
in Fig, 41.35.

The angle ¢, formed by the tangent Lo the centre line of the arch at point &
and the z-axis and the ordinate g, of point & are delermined as [ollows

dy d [ 4f 4f i
[”:T =y x]zw(l—-&r}

tan IF=-E-;=7£}-

for r=2zp=3 m tang@==tan q13=:—§-

wherefrom
Gp == 33742"; sin g = 0.555; cos p = 0.832
and

Af A4 L, . 3
yh=T2-—(l——1‘k).rk=—12T (12—3) 3 =3 metres

Substituting Lhese values in expressions (1.3) wo obtain Lhe stresses
acting over scetion k& of the arch
On ==V =V, c0s g — Nyj, 5in g —gzr €08 gp = —3.33 tons
L
— T A = . i qa2y - i
Mp=2M —VAzj‘—Nt{e{_bh—f-rd)——T’—!].“ ton-metres
L

Np==2U =V 4 sin @p+ Nyi, 08 G — g2y sin p =12.20 Lons
L

The inflnence lines for the abutment reactions V¥V, and ¥y shown
in Fig. 41.8¢ and d will he the same as for an ordinary three-hinged arch §The

10+
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I‘iuy
influence line for the tie tension will be derived from the equalion Nﬁcu—d—ﬁ—
(see Fig., 41.3e).

_ The construction of influence lines for @y, My and ¥y will be based on the
foilowing relations similar in every respeet to those of (4.3

Qu=0} cos g — Ny sin qp
My = ;ﬁnh*— Ntig(p—f4-d)
Arh o Q;:! sin Tr+ Ny te COR G

Tiwse influence lines together with the intermediate graphical operations
are vepresonted in Fig. 41.37, g, &, i, 7 and &.

As a check let us find the stresses in section & nsing the iuflucnce lines just
obtained

On=2 ( -—%X'J.f'ﬁli '—-;-X ').208—-2—){0-411;) —4 X%X{},MG—; —3.33 tons
My =2 xé- % 1.5 G=9.0 ton-metres
43 3 - ? 1 s
Ny=2 [—ﬁ-xoms L (0.485 -4 0.555 -1 .52(;)] X5 x 1326 =12.20 tons

These values coineide exactly with thoso found previously. All the eompuita-
tions may be safely rogarded as corvecl.

Let us consider now the three-hinged bents. Their abulment
reaclions will be determined in exactly the same way as for the
three-hinged arches, the same applying to the delermination of
the internal forces and Lo the eonstruction of influeice Lines (whelh-
¢r by graphical or analytical methods). Exception must be made
for vertical members (provided these are present) for the neutral
poinl method cannot be applied to the construction of the bending
momeut and shear influence lines for the latter. J{owever, this meth-
od  remains  quile suitable for horizontal and inclined moembers
of the bent.

Problem 2. Determine the abutmenl reactions and the strosses in cross sec-
tions m and n passed through the uprightsof the bent in Fig, 42.32 and draw the
corresponding inflnenco lines for section m.

Selutton. The abulment reactions will he obtained using the equilibrium
oifuations

2;M4=4P‘+3P2——4Vﬂ=0
EM}] ﬂ/i_Pl—Pz—r"lFAz'D
}:x’l}c.""‘——zl"_{—ﬁth\ =)

L

BN By Iy Mgyl
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from whjil:h _;/‘r_' (a) _L=2m 1:"2‘—'3!.‘
Vg 4P +8Pn — s L0 I¢
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; i T
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Fig, 42.3h. ¢ and d represents the | o |
influence lines for the abutment reac- (g} “Influence Line for Ny |
tions 14, Vypund Hy = M1y =H a hY i
which Jdo not differ in any respect 1 l ] |
from those of an ordinary arch (see iln b '
Fig. 24.3 _
Fig. 42.3¢, f and g conlains the Fig. 42.5
influence lines for Q. M, and N,
derived from the exprossions Qp = —Iy, My = —2H4 and N, . V.

The influence line for X, might also be obtained using the neutral point
mothod (see Fig. 34.2¢r. In this case the neutral point will coincide with the
contre of hinge B, aud therefore having laid an a length corresponding to
sin gy, = 1 over poiut A we should connect the ordinate a so obtained with the
noutral point, i.e., with the point ol zero ordinate over hinge B (Fig. 42.3¢).



4- THE TRUSSES

1.4. DEFINITIONS AND CLASSIFICATION OF TRUSSES

The truss is a framed structure which will continne to form an
unyielding combination even when all its rigid joints are conven-
tionally replaced by perfect hinges. As a rule, trusses are used for
the sante purposes as beams and girders, except that the spans they

Fig. 1.4 Fig. 2.4

cover are usually much larger. In these cases solid web beams
become uneconomical due to the fact that the strength of the web
can never be utilized to the full extent (unit stresses in the web
being lower than in the flanges as will be seen from Fig. 1.4) and
also due to the danger of web buckling which hecomes more and
more acute with the increase in the height of the beams,

In fyamed structures such as trusses (provided the loads act at
the joints) all the members are subjected cither to direct cxtension
or comprossion which ensures a far better utilization of the male-
rials, the stress diagram for cach of these members being practi-
cally reclangular. Therefore the trusses are always much lighter
than solid web beams of the same span and the same height. A typ-
ical example of a truss is shown in Fig. 2.4,

Apart from two-dimensional trusses in which all the bars are
situated in one and the same plane, there exist three-dimensional
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or space framed structures in which the elements are situated in
several planes (Fig. 3.4). However, in a greal number ol cases the
design of three-dimensional framed structures may be reduced to
the cace ol several plane systems.

The span of a truss (Fig. 4.4a) is the distance belween its sup-
ports. The lower and upper longitudinal members form the upper
and lower chords of the truss, while the members which connect

Fig. 8.4

the two chords are called the web members. The latler may be sub-
divided into wverticals and diegonals or into struts and ties, the
steuts being always compressed and the ties extended. A counter-
brace is a member designed to resist bolh tensile and compressive
stresses. The end posts also called batter braces connect the upper
chord to the lower one and may be regarded as belonging both to
the upper chord and to the web members. The distance between
Lwo adjacent joints measured along the horizontal is usually called
a panel, Whe joints themselves being frequently referred to as panel
points.
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The following live eriterions may serve as a basis for the classi-
ficalion ol trusses:

fa) the shape of the upper and lower chords;

(b) the type of the web;

(c) the condilions al the supports;

{(d) the destination ol the structure;

(¢) the level of the floor.

In accordance with the first erilerion, the trusses may he sub-
divided into trusses with parallel chords (Fig. 4.42) and into poly-

Puanel

Vertical  ppper chord
~ '”79

- \- Lower chord
. Diogonal Span

Fig 4.4

gonal and Lrinngular trusses (Fig. 4.4b and ¢). Trasses with a para-
bolic apper chord (Fig. 4.4b) belong to Lhe first of the last two kinds.

The second criterion permits to subdivide the trusses into those
wilh a triangular pattern of the web* (Fig. 5.4a), those with a quad-
rangular pattern Tormed by verticals and diagonals®** (Fig 5.40),

+

#11: Lhe Boglish speaking countries, where the great majority ol trass typoes

are calted aller the names of engincers wh o first introduced Lhens on o large seale,
this lruss is known as the Warren truss (T'r. note).

**Tlhe more widely used of these are the Preit and the Houwe tiusses, the
first being characterized by extended dingonals and compressed vecticals, und Lhe
second —hy extended verticals and compressed diagonals (7r. noée
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those in which Lhe web members form a lelter A (the so-called
K-truss shown in Pig. 5.4¢), and finally trusses, the webs of which
are formed by lll(‘ superpogition of Lwo or more simple gridg illns-
trated in Fig. D.4d, ¢ and f. wsually referred to as the double, or
multiple Lrusseb*

The third ecriterion permits to distinguish between Lhe ordinary
end-sapported trusses (Fig, 6.4a), the cantilever trusses with a
built-in end (Fig. 6.44), the trmsses canlilevering over one or both
supporls (Ifig. 6.4¢ and d, respeciively), and finally Lhe crescent
and arched trusses in Fig. 6.4¢ and /.

As regards their destination the Lrosses may be subdivided into
roof trusses (Figs. T.da and 4.4¢), bridge trusses (Figs. 4.4a and
8.4) and miscellancous trusses used in crane construction (Fig. 7.48)
and in the construction of various lowers. bents, ete. (Fig. .-flf_).

In bridge construction the trusses are [requently subdivided
into Lhrough-bridge irusses, in which the railway {(or road) is car-
ried directly by the bottom chord joints (Fig. 8.4a), the deckbridge
trusses where the upper chords or their joints carry the roadway
(Fig. 8.4b), and finally the Lrusses where Lhe deck is carried at some
intermediate level (Fig. 8.4¢).

2.4, DIRECT METHODS OF STRESS DETERMINATION 1N
MEMBERS OF SIMPLE TRUSSES

We have already secen (Art. 2.1 and 3.1) (hat framed slructures
formed by adding conscentively any number of joints to a hinge-
connceted Lriangle (each joinl being conneeled by means ol two
coneurrent bars) are slatically determinale and form an nnyicld-
ing combination. Two-dimensional framed structures forined in
this way arc usuvally called simple {russes.

In Article 3.1 it has been shown that 2K equalions of slatics
can be written for any statically determinale truss (K being the
number of its joints), with the aid of which both the abutment
veaclions and stresses (internal forces) in all the members can be
delermined. 1t is usual Lo starl with the determination of the abut-
ment reactions for which purpose three equilibrium equalions are
writlen for Lhe truss as a whole,

The stresses in the separate members of the truss can be deter-
mined by considering the equilibrium of separate paris or joints

+

*The truss in Fig. 5.44 is nsually called the dewble Warren truss for its web
may be oblained by Lhe Hupergmitwu of two simple triangular webs while the
Lruss in Fig. 5.4« may he vogarded as a modification of the Post or ol the Whipple
truss {Tr. note).
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of the siructure, these parts or joints being acted upon both by
the external forces and the stresses in the sectioned bars. The total
number of independent equilibrium equations amounts to 2K—3.

[t is very important to find such imaginary sections which will
allow direct determination of stresses in the separatc bars, without
ndcessitating the simultancous solution of several equations with
several unknowns. This simplifies very considerably all the compu-
tations and at the same time enhances their accuracy.

Tho following two methods will usually permit the determina-
tion of the stresses in all the members of a simple truss by solving
in each case one cquation with a single unknown,

THE METHOD OF MOMENTS

This method is used mainly when a section can be passed through
the truss in such a way as to cut three nonconcurrent members, as
for example section I-I in Fig. 9.4a.*

Intersection point of
bars 1.3 and -3
Intersection point of |P

I

Intersection point of
bors 2-3 and 2-%

Fig. 9.4

The axes of such members will intersect by paics at three dilfer-
ent points not lying on one and the same straight line (Fig. 9.40).

The equilibriuin equations of the moments of all forecs, both
internal and external, acting on the cut-off portion of the truss
taken ahout each of these intersection points will reduce to one
equation with one unknown, this unknown being the internal force
acting in the bar not passing through the moment point.

Thus, in order to determine the stress acting in any member of
the Lruss, a section should be taken across this truss cutting three
nonconcurrent bars, one of these bars constituting the member
in which it is desired to find the stress. In such a case the equation

+

*1t will be shown later that this method can be applied also in certain more
complicated cases.
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of all the moments about the point of intersection of the two other
bars will yield immediately the stress in the member under consid-
cration,

The point of interseclion of tiwo members about which the moments
are taken is usually called the nrigin of moments.

When writing the equilibrium cquations all the stresses in the
bars are conventionally reckoned positive which, with the conven-
Lion of the signs adopted, means that the bars are in tension and

Pig. 10.4

the stresses are direcled away from the joints. Thercfore, when a
negative stress ig obtained this indicates thal the member is com-
pressed, the slress acting towards the joint.

We shall now illustrate the method of momenls just described
by several examples.

In these examples we shall denote by the letter 7 the slresses
in the upper chord, by the letter L Lhe stresses in the Jower one,
and by the letters £ and V the stresses in the diagonals and verti-
cals, respectively. These letters will he accompanied by ciphers
indicaling in each case Lhe numbers of the joints to which the bar
in question is connpecled.

Let us now determine the stress in the member 3-5 of the truss
in Fig. 10.4a. For lhis purpose we shall pass section 7-7 cutting
the membor under congideration and two other members, one belong-
ing o the upper and the other to the lower chords. It is always
more ¢onvenient 1o consider that part of the truss acted upon by
a smaller number of Torces, and therefore we shall discuss here the
lelt-hand portion of our truss which must be in equilibrium under
the action of Lthe external forces 4 and P, and of the internal
stresses {Jy,. Dy sand Lg;, these stresses replacing the right-hand
portion ol the truss (Fig. 10.456).

In order to determine the unknown stress Ly; using a single
equation we shall place the origin of moments at point 4 where
members 2-4 and 3-4 concur,
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The sum of moments ol all the forces acling on Lhe left-hand por-
tion ol the truss ahoul point 4 is

SM, = Aay L Pypy— Lol == 1)

wherefrom

I- Aﬂ,‘—m P'l " _"”?
hagy 2= =

h

Here o is the lever arm ol stress La, about the origin of moments
(in thig parlicular case il iz equal to the height of the truss), and
M is the moment of all the external forces (including the reac-
tion) applied Lo the left-hand portion of the teuss about joinl 4,

4 A 7 & "
z 7
Z 3 Y4 &
X:d—q
@ 7]
3
A X=7d 8
I
Fig. 11.4

this moment being equal to the bending moment acting over a sec-
tion of a simple beam situated at the same distanee from the support
as Lhe origin of moments in the truss.

It indeed the truss were replaced by a simple beam having Lhe
same span and subjected to the same loads (Fig. 11.4). the bend-
ing moment acting over a section of this beam gituwated at the same
distance from the left-hand support as the origin of momcents
would be exactly equivalent lo the moment of all forcos applied
1o the left-hand portion of the truss aboul this origin of moments.

Thus, the stress in any member of the lower chord of a truss may
be found as a quotient of the beam bending moment by the lever arm
of the stress about the origin of moments.

The bending moment in a simple beam remaining always positive
under any system of vertical loads, the stress Lys will also remain
always posilive, which means that the clements of the lower chord
will be cxlended as long ag the loads act downwards.

Let us now determine the stress in member 2-4 of the upper
chord. In this case the origin of moments should be taken at joint
4 and the moments of all [orces acting on the left-hand partion of
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the teuss about this point should be equated to zero (see Fig. 10.4b)
E.':l’fa-”_—" Ad_"pi';‘k {]2&?‘--_ 0

from which

o Ad—Pyd)2 M
28 = _"_'__I._'_ = _"r_

The numerator of the fraction which we have denoted by M!
is again equal to the beam bending moment acling over a svction
the abscissa of which is equal to d. As the beam moment M} is
always positive under the given system of loads and as the frac-

. MY - s i 5 .
tion —* is preceded by a negative sign, the stress (7, is negalive,

which means that member 2-4 is compressed,

IL may be easily shown, using the same reasoning, that all the
members of the upper chord as well as the end posts of a Lruss will
always remain compressed under any system ol vertical loads.

In order Lo determine the stress D, induced in the diagonal
-4, let us equate Lo zero the sum of moments ol all the forces
acling on the left-hand pact of the truss about point & at wlich
the direction of bars 2-4 and 3-5 intlersect well bevond the perime-
ler of the truss {sec Pig, 10.4b).

EMy = — Aa+P; (a +%) — D=1
wlherelrom
d
Plerg)—s
Dy, == —

™h T

It will be thus observed that in the method of moments the magni-
tude of the stress is aliwvays expressed by the quotient of the momerd
of external forces acling on the left-hand portion of the truss M by
the lever arm of the stress r about the same point
3 M i
N = (1.4}
Simple Lrusses defined above may have a more intricate pattern
as represented in Figs. 12.4 and 14.4. Nevertheless, the method
of moments remains applicable for the determination of stresses
in their members. ladeed, if the truss in Fig. 12.4 is sectioned
along line 7-7, the otigin of moinents may be taken al point 6 where
three of the four seetioned members converge (Fig. 13.4), and there-
fore we shall again obtain one equation with one unknown which
will yield the stress in the upper chord member 4-7

Eﬂ’fa = Ad+ b’\-,r}b: D
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wherefrom
; _ Ad_ My
Uo=——=—7
It it is desired to find the internal force acting in member 6-9
of the lower chord the origin of moments should be shifted
to point 4, then
EM=Ad—Lgh=10
whence
Ad 0
h h
Stresses in the upper and the lower chords of the truss shown
in*Fig. 14.4 can also be determined by the method of moments.

LBQ =

Fig. 12.4 Fig. 13.4

Thus, in order to find the stress in bar 7-9, section I-I should be
passed, cutting in addition to the member considered five more

Fig. 14.4

bars, all converging at point Z0. If this point is taken as the origin
of moments (Fig. 15.4), the equilibrinm equation becomes

SMg=A4d— 4P X 2.5 +4-Upsh =0
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froin which
iz 4Ad—10Pd
Upg— — =20

Let us now consider an even more complicated trass proposed
by the eminent Russian engineer V. Shukhov for one of the large-
span buildings in Moscow (Fig. 16.4).* This fruss conslilules an
wnyielding system being composed of two basic triangles 7-4-§
and Z-8-6 connecled by three nonconcurrent bars /-2, 3-4 and 5-6.
The trusg is statically determinate as the number of bars § salis-
tics the condition § = 2K — 3 =2 x 6—4% — 9. It is not pos-
sible Lo find a section through the Shukhov truss cutling any number
of bars converging at a single point with the exception ol one,

r ” e 2
1Y Jl 51 ?l s
79
o
~
ﬁ"-‘:..'.\,\
“2d 3 3 m
#q
1)
Fig 154 Fig, 161

Llowever, the section r-s-f which culs bars 7-2, 3-4 and 5-6¢ once
and bars Z-4 and 7-5 twice permits Lhe delermination of stresses
acling in bars /-2, 3-4 and 5-6,

As will be seen from Fig. 17.4, the stresses in bars /-4 and /-5
will balance, these stresses enlering Lthe equilibrivm equation twice
with an opposite sign. Therefore in this section only Lhree unknown
stresses will remain Uy, Uy, and Ug; which may be easily deter-
mined by the method of moments.

Thus, in order to find the stress in bar 7-2 we shall place the
origin of momenls at the point of inlersection of bars -4 and 5-6
{point &y in Fig. 17.4). Then

21141” == —{)rairh_—}'f?—l_‘?bh == D
wherelrom
3
By S,
+

*This Lruss cannot be considered as balonging to the simple ones hut never-
theless all Lhe stresses in its members muy ho determined by the method of
momenls.
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Similarly, point %, where the bars 7-2 and 5-6 interscet will
be taken as the origin of moments for the determination of the
stress 73, and point k3 will form the origin of moments for stress
Ugs (Fig. 18.4). Thus, stresses Upy, U, and Uy, are determined
independently using three cquations, cach containing only one
unknown,

The stresses in all the other members will now be casily ob-
tained by passing straight sections across any number of bars, pro-

Fig. 17.4 Fig. 15.4

vided that the stresses remain unknown in nol more than three of
them.

The examples just considered lead to the following conclusions:

The method of moments is very expedient when a section may be
taken cutling any number of bars converging at a single point, pro-
vided this point does not fall on the direction of the member
investigated.

This method can also be used in cases when a section culs more thun
three nonconcurrent bars, provided the siresses in all the bars except
three gre already known.

The same method may be utilized when the section crosses any num-
ber of bars, provided each bar with the exception of three is sectioned
twice.

The method of moments is frequently considered as forming a
particnlar case of the more general method of sections. Indeed when
two ol Lhe sectioned members are parallel it becomes impossible
to take the origin of moments at the point of their intersection
and therefore the method of moments can no longer be applied.
But passing a section through the truss will still permit the deter-
mination of the stresses required as we may in that case use the
equilibrium equation of the vertical components of the internal
and exlernal forces (it is assumed that the chords are horizontal),

As an example, let us consider the truss represented in Fig. 19.4,
Sections I-I and JJ-IT will permit the compuiation of stresses

L1—853
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Let us now consider an even more complicaled truss proposed
by Lthe eminent Russian engineer V. Shukhov for one of Lhe large-
span Dbnildings in Moscow (TFig. 16.4).* This truss conslitultes an
unyielding system being composed of two basic Lriangles I-4-5
and 2-3-6 connccted by three nonconcurrent bars 7-2, 3-4 and 5-6.
The truss is statically determinate as the number of bars S satis-
fies the condition § =2K - 3 =2 X 6—3 = 9. It is uot pos-
sible Lo lind a section through the Shukhov (russ cutting any number
of bars converging at a single point with the exceplion ol one.

Fiog, 15.4 Fig, [G.2

However, the seclion r-s-f which cuts bars 7-2, -4 and 5-6 once
and bars /-4 and /-5 twice permits the determination of stresscs
acting in bars [-2, -4 and 5-6.

As will be seen from Fig. 17.4, the strosses in bars 7-4 and 7-5
will balance, these stresses entering the equilibrium equation twico
with an opposite sign. Therefore in this section only three unknown
stresses will remain Uy, Uy, and Uy, which may be casily deter-
mined by Lthe method of moments.

Thus, in order Lo find the stress in bar 7-2 we shall place the
origin of moments at the point of intersection of bars 34 and 56
(point %4 in Fig. 17.4). Then

EMM': —Ugl?‘h——P}J—Bbﬁ ={
wherelrom
Uy — Tu—Pp
R
’

*This truss cannot be considered as belonging to the simple ones but never-
theless ull the stresses in its members may be determined by the method of
momenls.
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Similarly, point %, where the bars 7-2 and 5-6 interscct will
be taken as the origin of moments for the determination of the
stress Uy, and point k; will form the origin of moments for stress
Ugs (Fig. 18.4). Thus, siresses U,y Uy, and Uy are determined
independently using three equations, cach containing only onc
unknown.

The stresses in all the other members will now be easily ob-
tained by passing straight sections across any number of bars, pro-

Fig. 17.4 Fig. 18.4

vided thal the stresses remain unknown in not morc than three of
them.

The examples just considered lead to the following conclusions:

The method of moments is very expedient when a section way be
taken culting any number of bars converging at a single point, pro-
vided this point does not fall on the direction of the member
investigaled.

This method can also be used in cases when a section cufs more than
three nonconcwrrent bars, provided the siresses in all the bars cxcept
three are already known.

The same method may be wlilized when the section crosses any num-
ber of bars, provided each bar with the exceplion of three is sectioned
twice.

The method of moments is {requently considered as forming a
parlicular case of the more general method of sections. Indeed when
two of the sectioned members are parallel it becomes impossible
to take the origin of moments at the point of their intersection
and therefore the method of moments can no longer be applied.
But passing a section through the truss will still permit the deter-
mination of the stresses required as we may in that case use tho
equilibrium equation of the vertical components of the internal
and external forces (it is assumed that the chords are horizontal).

As an example, let us consider the truss represented in Fig. 19.4.
Sections I-I and [I[-II will permit the computation of stresses

$14—853
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in bhars 5-6 and 6-7, vespectively. In eiffect projecting on Lhe
vertical all the forces (both cxternal and internal) acting on the

Fig. 19.4

lefi-hand portion of the truss (Fig, 20.4) we obtain
E}r= A—‘P‘{*T’PJQ i."

wherefrom
Vis=—{A—P)= -0

where @ is the shear in the corresponding section of a simple beam

of the same span.
£ P
4 [ 2

58

Fig. 20.4 Fig. 2.4

The equilibrium of that portion of the truss to the left olsection
II-11 (Fig. 21.4) will again furnigh
Y =A'—'P—P"—“Dﬁ: sing =0
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from which
A—2P Q
Dgy= :

sine | s
where @ is again the shear in the corresponding section of a simple
beam, this shear being equal to (4 — 2P),

TILE METHOL OF JOINTS

In this method the equilibrium of each joint is considered sepa-
rately, the joinl being separated from the resk of Lhe {russ which
is replaced by the stresses aclting in the seetioned hars, In the case

2
i

n w\} _ T
LT
s I

& win !

| :
Fig, 22.4 Fig. 234

of simple trusses the method of joints permits the successive deter-
mination of stresses acting in all the members starting with a joint
formed by the meeting of two bars only.

As an illustration of the above, let us determine the stresses
in the bars 7-2, 7-8, 2-3 and 3-5 of the truss represented in Fig. 22.4.
We shall begin wilh considering the equilibrium of joint 7 at the
left-hand support (Fig. 23.4). The projection of all the forees applied
to this joint on the normal to bar 7-3 (in this case a vertical) gives

Y =A4Upsina=0
from which

A
Uggo — sin &
In the present case 4 is equal to -—;;- and thercfore
P
Hiastie 2sina

The magnitude of the stress in the bar 7-3 will be obtained by
projecting all the forces on a direction perpendicular to bar 7-2,
i.e., on the axis y,

XY =Acosa—Lsino=0
1+
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wherefrom

Acosa I
Lig= sin o —g—cnto&

The same result could alse be obtained by projecting all the
forces on the r-axis leading to
2X =L Upcoso=0
wherefrom
Lyy=—Ujcosa

Substituting in this expression Uy by its value found earlier we
obtain once again

L

= 2 S = t
19= g3y Cosa=-cota

In order Lo determine the stresses in members 3-2 and 3-5 we
shall separate Lhe joint & (Fig. 24.4). Equating to zero the sum of

ly
|
|
V:?Z
< Lss __x
Fig. 24.4

all the horizontal compornents we find
EX=—Ly-+Lagp=0

Remembering that Ly and Lg denote the same stress in har 1-3
we obtain

o

L35=L13=TGU|;(X.

The vertical projection of all forees acting on joint 3 gives
EY=V52=0

The stress in bar 3-2 would remain nil if this bar were not at
right"angles with the lower chord.

Hence, when two out of three bars meeting at a joint lie on a straight
line, the stresses in these two bars will be equal in amount and
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in sign and the third bar will remain idle as long as no external force
is applied to this joint.

The equilibrium of joint 2 will now permit the determination
of the stresses in bars 2-4 and 2-5 which will be expressed in terms
of the stresses Ug; and Vg already known.

It should be noted however that in the method of joints the
stresses in all the members are determined consecutively, those {ound
at a laler stage being expressed in terms of those found at a pre-
vious onc. Therefore, any accidental error committed in determin-
ing any particular stress will be carried along and will render

Fig, 25.4 Fig. 26.4

inaccurate a number of subsequent computations. Another setback
of the method of juints resides in the fact that trigonometrical
functions enter the equilibrium equations, thus complicating the
caleulus.

In certain cases the computations will be simplified if we remem-
ber that if only two bars meet at a joint where no external force is
applied the stresses in both these bars will be nil. This will be read-
ily confirmed by considering the equilibrium of joint 7 of the truss
represented in Fig. 25.4.

Indeed the projection of all the forces acting on this joint on a
vertical and on a horizontal (see Fig. 26.4) gives

SV =Uppsina=0

ZX =U13 CO5 ot +L13= 0
whence

Ujp=Li=0

In the actual design of trusses all the three methods described
above are frequently used together, preference being given in each
particular case to the one leading more directly to he result re-
quired.



: 72
l T

E /

oy -

< /
7 EA &5 N7 KJ e

d=ldagr| 15m | 13m | ism | 15m |
fl |

Yr g I

Pig 2T 4

Pzt PPt lﬂ-—-it’}i

‘ [’. FE
S A=30t _ﬁ,.=:as §
ki i =30m Iy
Fig, 284
v nr I
P10t P10t P=l0t
¥vr Peip g RP=10t
4 o E
L
) ] e 70 H
LA N ; \E
y w52 1l }\ i 7. g 1 1z
7%_ L Hill W 1| Nz i i
J_a v VK 7 1 *
I I ge30¢ 1 P30ty - gp . Fr=30t F=dft P30t
IA =100t i A=l |

Fig. 30.4




o
“3 7 2 1}
&
B
o - 5 ; b 7 |\1r11| 82
vz By wg| Jd J—=¥4 |=¥g—d— =4 o ?
(5= . .
m d8 (=70 LS _..MQAT
= R i wuars x 4 B — -
|H__.:.w.ﬂ| ..__.uwl l.. = 08p +d—=AX I | o
= - ’
S e
=wue'me) — i
is
=N ‘i NHQL dS :|4£. n+
y B Y g g — =Sy II g-r
1z By g £ L ==y - #d WZ
¥ Le LI 5 d e Pd
2o 3
35 | %2 -
~Z 5 ; : ; ‘0N
s990N 1z 3 uorInfos :mhmm__ﬂ_m__uw . pelopisuoo uonod J0 UNINS Wi | o

sagsadie Jo
apm (e w

Proapvg



T

(5-0g - ¥ = Culley -
g ) (pay+2)igg— " _u+§.._w,+
} ]
Wuncs ._[|||Il|f + o) tgg+
guis x CEVED e Tl ey 4 ) at
Xgto)= [ o | 0 | +gr=f¢ |+%%—="ng | oz
%gury g
0 ur} il
=0 U pg==
WOEJIIYM
{rato)
P
x4 _p ueq
8
owml) smres ayy -
.,_%_.MHB ue) Pagtrast | L ga—
Ta = e
pus (pgto)="4| 781 Ty T | —Re—=iyR 9F
G | 0
nole uore ‘0N .
i umw_w_m s, votinios Eﬁ__wm_m___:_ﬁmm PI3P15UOD U0NISd Ju 4I19YS u_wc_mwwmo ..mm
53350118

J0 apnljudely

7 MqvL



Ty -
EJMN = o={ls+
LI
biﬁ«ﬁ gp) = To-+pr +|MNV. |\_.— ey / MQM...O._NENHQ
¥ lﬁ_wl_ltm..: ﬁ..NNI_u 7 tﬂ : D«Nu_n 'd
_ e+ 6 Np-fpy 4 (p+io)d+
=T g 1 = Hop —=Hng Fe
uorjenho |
asn 'p puy of FEFET 0V
5 o €
— vu_. o
¢ T - Oﬂmhqwbamu
ety ? %+E +old—od—
N Y o= & s e et e e =1 =
(pz+'n) 061 . Il PEF=WX s
(yrog “H1g 99s) o=ti—
o="8g="q e Sg =04 —Wy =4z -7 | 94
8 0=pS 57—
p={ptd— ] $
6 =Pl —Pd—
10g A eeg 081 [—vd —rev) =T —pzV ="M% e
|




Gi=y
&y !
Sp urs i s 2
S el WLy =A% - ~-
7og 314 e0g | o v Lol i i “ el |
Bd— 00!
g Ty —HA =R 4 g
7Og "B1d 29y 77 75 A T
0="St7+4 i
08F =g +¥y—=xz AY &I
”wuum_."mu_.|
PS _ g 2
—_— T —_— =G e-f
08} By =1 Py =%% sopcly 200/ eg
i
(10¢ "By ass) A on _}.? ; H Al-Al
5 %p e (z+pig 0=-*4%q + D) .
4 B i, _|+Crf-p) e+ R
Bo s X Gobp)d—toy | +(otp)y |
X{pg+Wl=%]| p 0 =R +Hiop — =P ¢-g
= |
S0 Juto | “U9L nornn{og Eﬂ.ﬁ_m%m__u.wmm PIURISU0D uuipiod JO gu1eys ﬁ”mw hmo T
3559193
Io apnyasviy

Wepnigane ) (g aqu



2.4, Direct Methods of Siress Determination

Pzt P=ig¢ P=I0t A=/t P=l0t
E;
g
<
7}%—{1 q d d - d .
A=30t =301 A=30t Py=d0t  F=301¢
A =700t A=1001
Fig. 314
/ s
i

i

i 4NN

&

nem HI (I,

........



172 The Trusses

I'roblem 1. Computo the stresses in mombers 4-6, 3-6 and 7-8 of the truss
shown in Fig. 27.4.

Solution. Pass two sections as indicated in Fig. 27.4 and consider the equi-
librium of the left-hand portions of the truss. All the calculations are given
in Table 1.4; column 3 contains sketches of the portion of the truss under con-
sideration, the other columns containing the corresponding equilibrium equations
and their sofution,

. Problem 2. Compute the stresses in all the members of the trusses represented
in Figs. 28.4, 29.4, 30.4 and 31.4 and draw the corresponding diagrams. All
the four trusses carry the same loads and have identical spans.

Solution. The results of all the calculations are represented in the form of
graphs in Figs. 42.4, 33.4, 34.4 and 35.4, the width of the band along each truss

Pelt P=70t A=t P=1gt P=10t

S 3
1 ey | e
o [ <
VAT o =g d g a J a
1
A=I0t FER0F RR30t A=J0L AE30L
ra)
A =100t v f=100¢
b
m o
o
o
v
(5)
Fig. 36.4

member being in direct proportion to the magnitude of the stress. Compressions
(reckoned negalive) are halched while tensions (reckoned positive) are left
unshaded. [Tfl@ values of all the stresses are given in tons.)

Computations pertaining to the trass in Fig. 30.4 are entered into Tahle 2.4
from wlhich the sequence of all the operations is quite clear.

The comparison of stress diagrams for three trusses of equal span, carrying
the samo loads and having the same web pattern shows (see Figs. 32.4, 33.4
and 34.4) that the triangular truss in Fig. 29.4 is less economical 45 the combined
a}rea of the graphs is the largest and therefore this truss will be the heaviest of
the three,

Problem 3. Determine the stresses in the K-truss with parallel chords repre-
sented in Fig, 36.4a.

Solution. Examining any one of the joints at midheight of the truss where
two inclined bars meet with the vertical, we find from the projection of all
forces on the horizontal that

EX=Dcosa+D'cosg’ =0
wherefrom
Deosa==—D"cosa’
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aml if ec==c¢’ then

D=0

which means that the slresses in the inclined bars of ope and the same pane] are
equal in magnitude but opposite in sign.

The determination of the siresses in all the members of the truss is omitted.
The graphs of thoso stresses are shown in Fig. 87.4

The reader is invited to prove on his own that the stresses in
all truss members marked with a dash in Fig. 38.4 are nil.

3.4. GRAPHICAL METHOD OF STRESS ANALYSIS IN SIMPLE
TRUSSES

It has been shown in the preceding arlticle that all stresses in
a simple lross may be dotermined analytically by the method of
joints. Every truss of this type will contain at least one joint where
only Lwo bars meet and this joint shonld be the starting point of
the operation.

We shall now examine the geaphical method of stress analysis,
this method being based on the resolution of forces along two given
divections. The following sequence should Le adepted.

A joint where only two bars meet must be selectod and the exter-
nal foree (reaction) applied to this joint must then be resolved
along the directions of the two bars, using either the parallelo-
gram method or the triangle of forces method. The triangle must
necessarily close. for the joint is in equilibrium. Having thus ob-
tained the stresses in two members we may proceed to the next joint,
where Lhe resultant of the stress previously found and of the external
force applied to the joint (if any) must be again resolved along
the dircelions of the next couple of bars. Continuing in Lhe same
way wo shall complete the delermination of all the stresses in all
the members of the truss.

As am ijllustration of the above, lot us analyze Lhe truss repre-
sented in Fig. 39.4 acted upon at the upper chord joints by three
cqual lorces.

Iig. 40.4a¢ shows the same truss, its Lwo supports having been
replaced by the appropriate reactions, found either graphically
or analytically, Commencing with joint 7, where Iwo bars /-2 and
£-3 meet, let us draw the corresponding force polygon (Fig. 40.4b
and ¢). The joint being in equilibrinm and acted upon by reaction

o rr
A = % and by the stresses Uy, and Z,;, we must

(1) lay ofi at some scale the reaction A4 whose magnitude and
direction are both known;

(2) through both ends of this line trace parallels to the directions
of bars I-2 and -3 until their intersection, thus compleling the
force polygon (which in this particular ease reduces to a Iriangle).
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The sides be and ca of this triangle measured to the same scale
as reaction 4 will give the magnitude of the stressos in bars 7-2
and 7-8, respectively. The direction {sign) of these stresses will
he determined remecmbering that in a closed force polygon allthe
forces follow one another.

Thus, the reaction 4 being directed upwards, we shall lind that
the stress Uy, acts towards the joint which means that bar /-2 is
compressed while stress Ly; acts away from the joint and therefore
bar -3 is extended.

We may now mark the direction of the stresses found on the
schematic drawing of the truss (Fig. 40.4a) where arrows pointing

J
{a) ()
Fig, 42,4

Lowards the joind will indicate compression and those pointing
away from the joint—tension. Arrows should be also shown at the
other extremities of bars 7-2 and 7-3, as the stresses in these bars
will have to be accounted for in considering the equilibrium of
joints 2 and 3.

At joint 2 acted upon by the load P three bars, namely bars 2-7,
2-4 and 2-3, mect together. The stresses Uy, and L3 being known
ag well as the load P (Fig. 41.4a), the construction of the force
polygon {Fig. 41.40) will be carried out as follows: lay off siress
[7,» acting towards the joint and the load P and then through the
free¢ ends of these lines draw two parallels to the directions ol bars
2-4 and 2-8 until their intersection, thus forming a closed polygon.
Iig. 41.45 shows that both stresses U,, and D,; are compressive.

Stresses in bars -4 and 3-5 may now be obtained by cousidering
the equilibrium of joint 3 (sce Fig. 40.4a). Four bars meet at this
joint, namely bars 3-7, 3-2, 3-¢4 and 3-5, but the stresses are un-
known only in the last two. lence they may be found by constru-
cting a force polygon as shown in Fig. 42.4. It will be readily ob-
served that both these stresses are tensile.

The determination of the stresses in the right-hand half of the
truss is nol required due to the symmetry ol the structure.

The procedure just described permits the determination of the
stresses in all the members of a truss by constructing successively
force polygons related to each joint. Each stress will appear twice
in these polygons, al first as an upknown to be found and later as
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a given force applied to the adjacent joint where two othor unknown
stresses are sought. All of these polygons may be merged together
to form a single diagram called the Maxwell-Cremona or stress
diagram in which each stress will be met with only once,

Such a merger is represented in Fig. 43.4. This operation is made
possible by the fact that in the force polygons the forces appear in
the sequence they are mel with when each joint is passed around
in the clockwise direction. (The opposite direction could be adopted
as well, but following the tradition we shall always use the one
mentioned first.) Thus, in joint I in Fig. 40.4e¢ we meet [irst the

¢

Fig, 43.4

reaction A followed by stress Uy, and then by L,z In joint 2 first
comes stress [7,,, then the load P and stresses U,, and Da;. This
sequence is maintained in the force polygons in Figs. 40.4¢ and
41.4b.

In practice the stress diagram for the whole truss is generally
obtained directly, omitting Lhe force polygons of individual joints.
This method will be explained using as an example the truss shown
in Fig. 44.4. The notations to be used are as follows: letters and
ciphers will denote areas bounded by the truss members (areas a, b,
and ¢) or by the lines of action of the loads and reactions (areas 7,
II, and IIT). Each stress, load or reaction will be designated by
two indices corresponding to the two areas it separates. Hence,
the left-hand abutment reaction forming the boundary between
areas I and II7 will be indicated by III-T (but not I-I17, the clock-
wise direction being followed), the load P by J-IT and the right-
hand reaction by II-III. Similarly, the stress in bar 7-2 will be
denoted by I-¢ when joint 7 is considered and by a-I for joinl 2.
With these nolations the numbering of joints may be completely
omitted.

The construction of the stress diagram will start at joini 7 over
the left-hand abutment where only two bars meet. Having laid
off the magnitude of rcaction III-I' along the vertical to the scale

{2—853
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selected we shall obtlain the stresses in bars I-2 and I-3 by tracing
through points / and JIJ parallels to the directions of these two
bars whose intersection at peint a will permit scaling ofif of stresses
in the upper and lower chords /-a and a-IJ1,

In order to determine the directions (signs) of these stresses it
will suffice to remember that in a closed polygon all the forces follow
each other in one and the same direction. Thus, knowing the direc-
tion of the reaction /f/-/ in the triangle JIJ-I-a-II1 of the diagram
we shall readily determine the directions of the stresses f-a and

External area
I

Fig. 44.4 Fig. 45.4

a-fII, the first being directed from 7 towards @, and the second
from e towards /11, Marking these directions on the sketch of the
truss (see Fig. 44.4) we find immediately that the stress f-a is di-
rected towards joint 7 and is therofore compressive, while the stress
a-f Il acts away from this joint and accordingly bar 7-3 is extended.

We may now pass to joint & of the lower chord acted upon by
the stress Ilf-a just found and by two unknown stresses a-b and
b-ITI. These stresses will be obtained by tracing through points
ITT and ¢ two lines parallel to the bars &-7IT and a-b, the point
of intersection of which shall be marked &. The sign of these stresses
will be derived as heretofore from the direction of the stress I//-a
previously found (see Fig. 45.4). Marking these directions on the
sketeh of the truss (see Fig. 44.4) we note that all the bars meeting
at joint 3 are extended.

The next joint to be considered is joint 2 acted upon by the load
I-Tl, two stresses already found b-¢ and e-7, and two unknown
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stresses IT-¢ and ¢-b. Returning to Fig. 45.4 we find that the dia-
gram contains the two stresses b-z and a-/. Adding to these the
load I-II {line I-I1) we may readily find the resultant b-IT of these
three forces marked in dash line in Fig. 45.4. Resolving this force
along two directions parallel to the bars 2-5 and 2-4 we shall find
the stresses in these bars given by the length of segments [/-¢ and
¢-b. The force polygon b-a-I-II-c-b indicates that bar I71-c is com-
pressed while bar ¢-b is extended.

Passing to the last joint 4 we find that out of the three bars mect-
ing at this joint the stress in one bar only remains unknown. If the
diagram has been constructed accurately, line ¢-7I7 giving this
stress must be parallel to bar 4-5 and must pass through point 711,
in other words, the diagram should be closed.

‘The force polygon for point 5 will be represented by [I-I1I-c-I].

In the stress diagram Lhe external forces were laid off in the
came order as they were encountered when passing around the
perimeter of the truss in a clockwise direction. The force polygon
of external loads and reactions must also be closed, the whole truss
being in cquilibrium. The closure of the external force polygon
and of the stress diagram constitutes a ready check on the accuracy
of all the operations.

The construction of the stress diagram is usually commenced
by tracing the closed polygon of loads and reactions which must
be laid off in the same order as they are met when passing around
the truss in a clockwise direction. This being done, the stresses
in the bars intersecting at each joint are determined graphically
commeneing with the joint where only two bars meet. These stresses
will also be laid off in the sequence they are encountered when
passing around each joint in a clockwise direction.

The construction of the forece polygon for each joint should bhe
carried out in such a way that the two unknown stresses should come
last, Thus in the example given in Fig. 46.4a force P, should come
first in order that the unknown stresses ¥ and X should come last
{Fig. 46.4b).

I the stress diagram each line denoting an internal force be-
longs to two force polygons corresponding to two adjacent joints,
and therefore it is not recommended to show the directions of the
stresses in the diagram, these directions being different in the two
cases just mentioned. Moreover, it is casy to determine the diree-
tion (sign) of each stress without going around the whole of the
force polygon corresponding to the joint under consideration. In-
deed, cach stress in the diagram is denoted by two indices following
cach other in the sequence they were met when passing around the
joint in a clockwise direction. This sequence will thercfore be differ-
ent for Lwo adjaceni joints, for instance, the stress in bar 2-3 (see

12*
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Fig. 44.4) should be denoted by a-b if referred to the Iower chord
joint 3 and by b-a when referred to the upper chord joint 2.

Fig. 46.4

As point @ of the [orce polygon represented in Fig. 45.4 lies below
point b Lhe stress a-b will be directed away from the lower joint
and therefore the corresponding bar will be extended.

Problem. Required to construct a stress diagram for the truss represented
in Fi%. 47.4a and to determine the stresses in all the members of this truss.

Solution. Using the notations described above indicale by letters a, b. e,
etc., the areas bounded by the members of the iruss and by I, J7, ..., /X
the areas separated by the directions of the leads and reactions as the truss is
passed around its perimeter in aclockwise direction. A force polygon I-II- . .
.. - =IX-I {Fig. 47.4b) may he then constructed commencing with the load
acting over the left-hand abutwent, reaction A {force 7X-I) being laid off last.
The force polygon must close as the system of external forces (loads and reactions)
ig halanced *.

The construction of the diagram starts at the joint directly above the lefi-
hand abuetment, by teacing a closed force polygon of all the forces acting at this
joint. Forces IX-I and [-I1 are already set out, their resultant [X-7T being
directed npwards. This force must now be resolved along the directions of the
Tower and the upper chords, for which purpose a line parallel to bar J/-n is
tenced through point FF and a horizontal parallel to bar a-7X through point /X,
the interseetion being marked by the letter 2. The sign of the stresses will he
determined by the application of the rule that in a closed force polygon all the
forces follow one another in the same direction. Accordingly the stress f7-a
mnst be directed from right to left and downwards and stress a-IX from left to
right. I'n other words, the stress in bar /7-z will be dircctod towards the joint
which means that this bar is compressed and the stress in bar ¢-7X away from
the joint indicating that this member is extended.

+

* In the force polygon forces VITI-TX (reaction B) and FX-7 (reaction A)
arp slightly offsot towards the right in order to aviid confusion with the
external londs.
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Points b, ¢, d, etc., of the stress diagram will he found as follows: point b
by tracing through point a a parallel to the vertical a-b and through point 117
a parallel to the bar f11-%; point ¢ by drawing through point & a parallel to the
diagonal #-¢ nnd a Lorizontal through point FX; point d will be Iormed by the

l,Ci
B i/ v |°
- 5 P A TN PP
B~ tﬁ' 3/ 5 ¢ € I ;.
I : — TR =7
la=ap ;

Fig. 47.4

interseclion of a vertical passing through point ¢ and ol a line parallel to the
upper chord member I¥-d passing through point IV. Peintse, j. g. k, t and &
will be found in the samo way. It will be noted that points e and § coincide, indi-

Table 3.4
Upper chord Lower chord Vertlcals Dingonals

Bar Stress Bar Stress Bar Stress Bar Stress
a-If —6.8501 | a1 X 6.30f | a-b —1.008 | b-c 1.600
b-IIT —6.85P ) -1 X 5.00P | cd —1.50P | d-e 1.95P
a-Iv —5.40P| eI X 3.80P | ef 0 iz 1.95p
gV —5.40P | f-1X 3.80° | g-h —1.30P | h-i 1.60.P
i-¥Vi —6.85P | h-1TX 5.05P | i~k —1.002
k-VII —G.85P | E-ITX 6.30pr
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cating that the slress in the vertical e-f is nil. The construction of the last dia-
gram pertaining to the right-hand half of the truss could be omitted as the
strosses in the two balves of a symmetrical truss subjected to a symmetrical
gystem of loads will be exactly the same.

In tho stress diagram of Fig. 47.4 dash lines indicate tensions and solid
lines compressicns. 1L will be seen that all the members of the lower chord and
the diagonals are extended, while the upper chord members and the verlicals
are compressed.

The magnitudes of the stresses scaled off the diagram are tabulated above.

4.4. DIRECT METHOD OF STRESS DETERMINATION IN
COMPLICATED STATICALLY DETERMINATE FRAMED
STRUCTURES

(ccagionally the designer will have to deal with framed structures
of a considerably more intricate pattern thav those formed by the
successive addition of supplementary joints to a basic triangle, each
of these joints being attached by means of two concurrent bars.
These systcms remain statically delerminate and in a number of
cases they may be derived from the simple systems by replacing
one or more bars by the same number of other bars without disturbing
the geometrical stability of the system as a whole.

As a rule, the analysis of such systems will require simultaneous
solution of several equations with several unknowns. However,
in many cases the complicated systems may be reduced to the simple
opes, or to such systems which can be analyzed without solving
equations with nwmerous unknowns, by a fictitious replacement
(substitution) of bars. The additional equations permitting to solve
the problem will express that the stresscs in all the substitute
members remain nil,

The following example will illustrate this method. Assume that -
it is required to find the stresses in all the nembers of the structure
represented in Fig. 48.4a acted upon by some external force, say,
Joad P applied at joint 6. It will be immediately seen that in this
structure three bars meet at each joint, hence the method of joints
becomes inapplicable. At the same time the method of moments
will lead to a number of equations each containing several unknowns,
which is extremely undesirable. In these circumstances let us trans-
form the structure into a simple system by replacing bar 6-3 by
bar I-5 as indicated in Fig. 48.4b. The structure so obtained [orms
an®unyielding combination as it may be formed by the successive
addition of joints 2, 4 and 3 to a basic hinged triangle 7-5-6, each
of these joints being connceted by means of two concurrent bars.

The analysis of such a transformed system is greatly simplilied
for the stresses in all the bars may be found, say, by the method
of joints without the solution of equations with muliiple unknowns.
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Let us denote by X the stress induced by the load P in bar 6-3
and let us apply the same force to joints & and 6 of the transformed
syslem in the direction of bar 3-6 (it is assumed that this bar is
extended).

It is obvious that the stresses in all the members of both the origi-
nal and the transformed systems will become exactly the same when
the stress in the substitute bar Z-5 reduces to zero under the combined
action of forces P and X. lndeed, the two systems will be identical
for any bar may always be replaced by a force acting in the same

direction and having the same magnitude as the stress in this bar,
and when the stress is zero this means that the bar may be omitted
without disturbing the system.

The principle of superposition enables us to express the stress
in any member i of the transformed system (and accordingly of
the original one, too) by

Ni=Nip+NiX (2.4)

where WV,, = stress in the transformed system induced by the load P
N, = same stress induced by a unit load X = 1.
"The same formula applying to the substitute bar, we may write
that the stress Ny in this bar equals

Ny=Nop+NexX=0

wherefrom
Nsp
Nyx

Substituting the value of X thus obtained in the expression (2.4)
we shall find the stresses in all the members of the system.

In more complicated cases it becomes sometimes necessary to
replace two or more bars. In such cases the method just dlescribed

N=—

(3.4)
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will not dispense completely with the solution of several equations
with several unknowns. The total stresses in the substitute bars
will still reduce to zero, and their expressions will take the form

Ny=Np+NyX(+NyaXq+NipXa+ ... =D
Ne=N2p+f\’_~nX1+Fsng+Wg3X3—e—...=0 {4.4)
Ns=Nsp+i_\?s;X1+N32X'3+W33X3—. ean =0

where Ny, N, N, ...=total stresses in the substitute bars

1, 2, 3, ete.

X X4 X;, ...=unknown stresses in the bars which
have been replaced

Ny, Nys, Ny, ...=stcesses induced in substitute bar
1 by unit loads X, =1, X,=1, X;=
=1, ..., respectively

1721, Fzm fvea‘ ...=game stresses in substitute bar 2, etc.

The values of the unknown stresses X,, X,, X ,, etc., will be
ine this case obtained by solving the system of equations (4.4).

In complicated structures the correct position of the substitute
bar is not always clear. However, it may be found in the following
way: having eliminated one bar reject one by one all the joints
connected to the remaining structure by two distinet bars until
a joint is found whose connections are insufficient. The additional
bar necded to fix this joint with respect to the remainder of the
structure will constitute the required substitute bar. If the struc-
ture so obtained still does not belong to the category of simple
framed structures, another of its bars should be eliminated and
further joints should be rejected until one more joint inadequately
connected to the rest of the structure is found, indicating the posi-
tion of the second substitute bar.

This procedure may be repeated as many times as necessary to
transform the structure into a simple system.

Problem. Using the replacement method determine the stresses in all the
members of a framed structure in Fig. 49.4a for sina = 0.6 and sin = 0.8

Solution. Replacing bar 8-6 by bar 7-5 as shown in Fig. 49.45 we obtain a
4 simple system permitting the determination of the stress X in the replaced har
by equating to zero tho stress in the substitute bar /-5

Nig=Nysp+Nyg: X =0

whence
X == _.i?.i”_
15%
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Nispand Nygx being the stresses induced in the substitute bar 7-5 by the
load P and the unit force X =1, respectively,
The stresses in all the other members of truss will be found using the
formula .
Ni=Nip+ Ni X

where Np and N sx are the stresses in the corresponding member of the trans-
formed system induced by the load P and the unit force X = 1, respectively.

Fig. 49.4

In this example the method of joints should be retained as iis consecutive
application to joints &, 2, 4, 6 and 5 will show immediately that only hars -6,

Table 4.4
Stress Induced | gyress fnduced | Stress induged ?31.11 here
Bar No. by “.’E"u forge by load P by force X of the original
= aystem
3 o 15
2-3 or 4-3 et 0 _"IZP +EP
] 9
1-2 or 54 —1 0 -—~7—P ._TP
5 15 15
2-5 or 4-1 + 0 _EP —EP
. B B 45 10
1-6 or 56 - +gP P +5P
- 7 3 3
1-5 —ﬂ '-‘gP +€ P 0
Note: The stress X in the replaged bar §-6 equals
Nisp 3pP-24 9
R e S B

Nipx
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5-6 and 1-5 of the transformed system are stressed by the load P, all Lhe other
members remaining idle

All the computations are listed in Table 4.4. Entries into the 4th and {he
5th columns have heen made only after finding the stress X in the replaced bar
3-6. Yalues appearing in column 4 have been obtained hy mulbitﬂlying those
of column 2 by the magnitude of the stress X (see below), while the entries of
colimn 5 result from the summation of figures contained in columns 3 and 4.

9.4. STRESS DISTRIBUTION IN DIFFERENT TYPES OF TRUSSES

Stresses computed for trusses of the same span, the same height
and the same number of panels and acted upon by the same system
of loads, but differing in the outline of their upper chords have
been illustrated in Figs. 32.4, 33.4, 34.4, 33.4 and 37.4 of Art. 2.4.
Examining these figures it will be noted that in certain trusses
the chord stresses inerease from the abutments towards the centre
line (Figs. 32.4, 35.4 and 37.4), while in other trusses they decrease
(Figs. 33.4 and 34.4). In trusses ol different shape but of the same
web pattern the verticals and the diagonals may sustain stresses
of different sign; thus, in the truss in Fig. 32.4 the diagonals are
extended while in the truss in Fig. 33.4 they are compressed.

For a number of trusses the mode of stress variatlons in chord
members, the sign of the stress in the elements of the web as well
as certain other peculiarities of their performance may be predicted
without detailed calculations.

As an example, lot us take the three irusses represented in
Iig. 50.4a, b and ¢ which differ one from another only by the posi-
tion of their diagonals.

In order to facilitate judgement regarding the sign of the stress
induced in the different elements of these trusses by a uniformly
distributed load we shall make use of an auxiliary uniformly loaded
beam appearing in Fig. 50.4d. The M and @ diagrams for this beam
arc represented in Fig. 50.4e and f. The bending moment diagram
shows that in the beam the lower fibres are extended and the upper
ones are compressed, indicating that in a truss the upper chord will
be compressed and the lower one extended. In the same beam the
bending momnent increases from the ends towards the middle and
accordingly (the height of a truss with parallel chords remaining
constant), the stresses in the chord members will also increase from
the abutments towards the centre line.

Sections taken through the auxiliary beam and the trusses (sec-
tion I-f in Fig. 50.4a, b, ¢, d) will help to find the signs of the stresses
in the web members. The shear in section 7-I of the beam being
positive tends to lift the left-hand portion of the beam with respect
to the right-hand one. Hence the sectioned diagonal of the truss
shown in Fig. 50.4¢ will be extended as shown in Fig. 51.4e and
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the sectioned diagonals of the trusses of Fig. 50.4b and ¢ will be
ecompressed (Fig. 51.4b and ¢). The same reasoning will show that
all the diagonals of the Pratt truss represented in Fig. 50.4a are
extended, those of the Howe truss in Fig. 50.4b are compressed
while in the Warren truss appearing in Fig. 50.4c extended diagonals
will alternate with compressed ones.

Fig. 50.4f shows also that the shearing forces decrease towards
the middle ol the beam; similarly the stresses in the diagonals of
the trusses will also drop to-

7 wards midspan.
When the loads are applied
\ to the upper chord of the truss
in Fig. 50.4¢ its verticals 7, 3
and 5 are compressed and ver-
ticals 2 and £ are idle. Vice versa,

w if the load is applied to the low-

I (4

Fig. 51.4 Fig. 52.4

er chord verticals I, 3 and 5 will become idle and verticals 2
and 4 will become extended. This may be easily proved by con-
sidering the equilibrium of the appropriate joints of the truss.

The direction of the stresses in the verticals of the Pratt and the
Howe trusses in Fig. 50.4¢ and b will be readily found considering
the equilibrium of that portion of these trusses which lies to the
right of section 7/-IT (Fig. 52.4a and b). The shear acting in the
left-hand portion being positive is directed uwpwards, compressing
the vertical in the Pratt truss (Fig. 52.4a) and extending it in the
Howe truss (Fig. 52.4b). These stresses will also decrease towards
the centre line of the trusses like the shearing forces in the simple
beam (Fig. 50.4f).
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All the above is readily confirmed by the stress diagrams in
Figs. 32.4 and 35.4.

If the trusses were loaded differently, the stress distribution
might alter considerably. For instance, if a single load were applied
at midspan of a beam its bending moment and shear diagrams would
be such as shown in Fig. 53.4a, b and c. In this case the shear
remains constant along each half span. The same will apply to the
stresses in the web members of the trusses.

When two symmetrical concentrated loads are applied atthe
hip joints of a truss (as in Fig. 54.4a) the stresses in all the chord
members except the ond ones will remain constant as may easily be
deducted from the bending moment diagram of the auxiliary beam
represenied in Fig. 54.4b. At the same time the stresses in the web
members will be nil (see shear diagram of a simple beam in
Fig. H4.4c).

The analysis of stress distribution becomes considerably more
complicated for trusses with nonparallel chords such as shown in
Fig. 55.4a, b and ¢. When the upper chord follows exactly the bend-
ing moment diagram, the stress (extension) im the lower chord
members will remain constant and the compression in the upper

chord will be directly proportional to ﬁ where a is the angle formed

by the corresponding member of the chord with a horizontal. Such
will be the case of a uniformly loaded parabolic truss (compare the
bending moment diagram in Fig. 50.4e with truss in Fig., 54.4b)
or of a triangular truss carrying onc concentrated load applied at
its apex (compare the bending moment diagram in Fig. 53.4b with
the truss in Fig. 55.4a). In these cases all the diagonals remain
idle and the stresses in the verticals are either equal to the load
applied at the corresponding joint (if the loads arc carried by the
lower chord) or become nil, when the load is applied to the top chord.
The accuracy of these statements is well illustrated by the stresses
compuied for the parabolic truss represented in Fig. 34.4.

When the outline of the truss chords does not coincide with the
bending moment diagram, only the signs of the stresses in the top
and bottom chords and the mode of their variation may be still
predicted fairly easily, the lower chord being always extended and
the upper one compressed as long as unit stresses of the same sign
continue to exist in the upper and lower fibres of the auxiliary simple
beam.

Let us take for example a triangular truss acted upon by a uni-
form load and let us superpose the corresponding bending moment
diagram in Fig. 50.4e on the schomatic drawing of the truss as rep-
resented in Fig. 56.4. The scales should be so adjusted that maximum
.ordinates of both drawings coincide.
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The ordinate of the bending moment diagram a distance. z from
the left-hand ahutment will he

i 2 =
y=krrmx"—' (0—501—51—3‘) hma:-"—‘ix L) kmax

12

At the same place the lLeight of the truss equals
 — 2z

h= oE &= Amaz =

Accordingly the ratio & =2 (:1 - —?) will decrease from abul-
menl to centre line and so will the stresses in both the top and the

M graph

Fig. 56.4

bottom chords. Confirmation of this statement will be found in
the diageam of stresses induced in a triangular truss by a uniform
load represented in Fig. 33.4.

6G.4. ANALYSIS OF GEOMETRICAL STABILITY OF FRAMED
STRUCTURES

1.' 3IMPLE STRUCTURES

1t has been shown in Art. 2.1 that a framed struclure may be
instantaneously unstable even if the number of bars in each of its
parts is sufficient to ensure its rigidity. Therefore, the number of
bars forming a given structure cannol constitute alone a criterion
of ils geometrical stabilily.

In some cases instantaneously unstable structures can be detected
fairly casily. Indeed it can be proved that in separate members
of such structures finite loads will induce infinite or indelinite stresses.

Conversely it may also be shown that if any given load will pro-
duce a well defined set of finite stresses in all the members of a
framed structure and that when the load is nil, all the stresses in all
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the members of this structure will also reduce to zero, this structure
constitutes an unyielding combination. The method of investigating
the rigidity of framed structures based on this property may therefore
be termed the zero load method.

It should be noted however that before applying this method care
should be taken to ascertain that the number of bars in each part of
the structure is sufficient to ensure its stability. Otherwise erroneous
conclusions may be arrived at as will be seen from the example of
a hinged quadrangle represented in Fig. 57.4. Indeed the method

%,

(a) (0
Pig. 57.4 Pig. 58.4

of jon(s shows immediately that when no load is applied the stresses
in all the members are nil, but nevertheless the system is unstable.

In order to demonstrate the accuracy of the statements made above
let us consider the following examples.

A plate connected to the ground by means of three nonconcurrent
bars forms as we know an unyielding combination (Fig. 58.4).
It is easily proved that under zero Joad the stresses in all the con-
necting hars will be necessarily nil. Indeed let us replace these
bars by the corresponding reactions R,, R 5. and R. (Iig. 58.4b)
and let us consider the equilibrinm of the mowents of all the forces
acling on the plate about the point of intersection of reactions R 4
and R g (point 0)). We obtain

R(‘r?’c =0

and as the lever arm ry 5= 0, Lhe reaction R, is necessarily nil.
The same reasoning will show that R, and R are also nil. This
serves to confirm the statement made above that all the members
of ¢ geometrical stable system always remain idle when the structure
carries no load.

Now let us investigate the case when the plate is supported by
three concurrent bars intersecting at point O (Fig. 59.4a). Roplacing
once again the bars by the corresponding reactions and equating
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to zero the sum of all the moments of external [orees aboul point
O we oblain the identity

EMOE RAT'A +‘HHTB +Rcrc =0

for r4 = ry = re = 0. Accordingly, the values of the reactions
remain undetermined. The other Lwo equilibrinm eguations (flor
instance, the equations of the force projections on Lhe z and y-axes)
will not help in hioding a definite solution for they will contain
three unknowns. Thus, the stresses in an instantaneously unstable
system may have no well defined value even when no load is applied.

The same conclusion will be reached if some arbitrary value were
attributed Lo any one of the rveactions. It could then be resolved
along the dircelions of the other two barg, the whole system being

Fig, 59.4

thus in egnilibrinm. That means that we can lind any number of
reaclion values salisfying the equilibrinm conditions, which indi-
cates that the system is instantaneously unstable,

[f the same system is subjected Lo some hnite load P not passing
through point O. the sum of momenis of all external forces about
this point becomes

SMo=RA0+Ry,0+ RO+ Pr=£0

as neither 7 nor r ave zero. That means that the system is nol in
equilibriuin and the plate will rotale about point 0. However as
soon as an infinitesimal rotation will have occurred, the three sup-
porling bars will no longer remain concurrent and the reackions
induced therein by the load P will be able to balance this load.
At Lhis particular moment the equilibrium equation about Lthe same
point O hecomes

EMy=Rara+ Byrg+HRerg+Pr=0
indicating that the reaction in at least one of the bars must be infi-
nite, for the lever arms ra, rp and re are intinitely small. Hence,
13—833
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the internal forces developed in un instantaneously unstable system acted
upon by a finite load may surpass any given value and therefore such
systems cannot be used,

Another example may be furnished by the geometrically stable
structure in Fig. 60.4e consisting of a plate adequately connected
Lo the ground and supporting joint ¢ altached to il by two concurrent

Fig, 60.4 Fig 61.4

hars ae and he. [f a load P were applied to this joint (Fig. 60.40),
the slresses N,, and Np in these bars will be given by

PX=—Neggtosa+Npcosa=10)
BY =Nmsina+Vygsina—P =10

wherefrom
. P
Nea= N"b:Zsm [

It follows that when the angles o formed by the iwo bars with
the horizontal spproach zero, the stresses in these bars will increase
indefinitely proving that the system has become instanlauneonsly
unstable. Tndeed, in that case joint ¢ will be connected to the rest
of the structure by two bars lying on one and the same horizontal
and we know thal such systems are unstable.

One more example of instantaneously unstable struclures is pre-
sented in Fig. 61,4, Although the number of bars in this system
equals 2K—3, the examination of equilibrium conditions at joinls
¢ and d leads Lo contradictory conclusions. Indeed the equilibrium
of joint ¢ requires thal the stress in bar cd should be nil. while the
equilibrium of joint & requires that it should equal — 2. This contro-
versity indicates clearly that the system is instantaneously unslable.

Thus, if a system is provided with a number of bars sufficient to ensure
its rigidity it will be instantaneously unstable, if

(1) finite forces induce in one or more members infinite stresses or

(2) the stresses cannot be defermined or controversial stress values
result from the consideration of different parts or joints of the structure.
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i'ig. 62.4 represents a number ol framed slructures the stability
of which the reader is inviled to investigate using the zero load
method. [le should keep in mind that this method becomes inapph-
cable it the numnber of hars 18 inferior to (2K—3).

(a) i)
() e}
{c) (f)

Fig, 68.4

2, COMPILICATTD STRUCIURES

First, let ug examine the case when the (ransformation of the
complicaled system into a simple one requires the replaccient
of but one bar.

The transformed system will consist of an elementary tmangle
to which a certain number of joints has been added, each connected
by two concurrent bars and accordingly this syslem will form an
unyielding combination; hence, the stress N, induced in the substi-
tute bar by a load P will have a well defined and finite value, If
a unit stress X = 1 divected along the bar that has been replaced
induces in the subsiitute bar a stress N,, also distinct [rom zero,
then, in accordance with formula (3.4), the inner force X in the
replaced member of the original system will equal

_Nep

ox

13*
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Since Lhis stress is finite and well defined, Lhe same will apply
to all the other stresses induced by a load 7 in the original system
which, as we know, proves that the system is geometrically stable.

On the other hand, if N,, = 0 then

Ne.‘ﬂ 1]

X-_:—N_ex__;iw QI'Xzz-ﬁ-

In olher words, the stress in the replaced bar becomes either infi-
nite or indelerminate indicating that Lthe whole system is instan-
tancously wnstable.

Accordingly, the expression X = — ;ep constitutes a means
4¥ o
of investigating the stability of complicaled systems. When &, =&
the system forms an unyielding combination, and when N, =0
it is instanlancously unstable.

The above can be formulated as follows: when the stress induced
e the substitute bar of the transformed sysiem by a wnit foree X = 1
acting along the replaced bar of the original system differs from zero,
the system is geomelrically slable, but when this stress becomes nil,
the system is instantancously unstable and unfit for practical use.

Figs. 63.4 and 64.4 represent a certain number of original and
transformed systems for which the reader is inviled to check the
accuracy of the value of N, indicated, and to decide accordingly
whether the system is stable or not. The substitute bars are shown
in dash lines.

The plus and minus signs placed against cerlain bars indicale
the direction (sign) of the stress induced in the transformed system
by a unit foree X == 1 acting along the replaced bar of the original
one. Knowing the direction of these stresses (the reader is invited
lo verify them) and considering the eguilibrium of joint X or using
the method of shears or that of the moments, the reader will find
in each case whether N,. is nil or possesses some definite value.

Let us investigate, lor instance, the system in Fig. 63.4a. The
eqnilibrium of joint 7 of the transformed system shows immediately
that bar -2 is exlended and that the stress in bar 7-6 is nil. Passing
to joint 2 we see that bar 2-3 is extended and bar 2-4 is compressed.
Moreover, the projection on the vertical of all the siresses acting
on joint 4 will show that bar 4-K must be extended in order to balance
the push exerted by har 2-4. Hence the substitute bar K-6 will
be compressed, for otherwise the projeclions of all the forces applied
1o joint # on the horizontal will not balance and therefore the system
iz stable. The same result could have been arrived at by passing
from joint 2 to joint 3 and then Lo joiunt 6.
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It is smggested Lhat the reader should prove that the strueture
represented in Kig. 63.4c will become wnslable when o = f.

For the steuclure in Fig. 63.4d he will find that N, is zero by
taking in succession sections n-n and m-m. For the system in

Uriginal systems Transformed systems

Fig, 634

Fig. 64.4b il i easier to projecl on the horizoental all the [erces
acting above seclion r-n.

Using the same melhods the reader should then investigate the
stability of the structure in Fig. 65.4,

When the transtormation of a complicated system into a simple
one requires the replacement of more than one bar, the equalions
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denying the existence of a difference between the original and the
transformed systems are, as we have already seen (Eq. 4.4)

.(?Vj =% 4\'_1 m |' Wi-|X-j 'i- iviEXm—r .-')\_'ra[;;/x-x — e T U

Nog— Nep;i‘f_'zrxl R Jﬁzxz '{“A_'—!axs +...=0

Ny =Ny, NaXy+ NppXo+ NuXyet ... =0

fwigiral systeans Traasformed systeT.

(6!

Fig. 64.4

The stresses Xy, X,. etc., arising in this case in the substitute
bars will possess concrete values meaning that the whole system
is stable only when the determinant D is different from zero. e.g.,
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when

NN Ny

NayVagN g5) = 0

On the contrary, when D = 0 the values of stresses Xy, X, etc.,

become uncertain, which indicates that the system is ingtantaneously
unsgtable.

D=

al (6}
id? fe)

Fig. 65.4

7.4. INFLUENCE LINES FOR STRESSES IN SIMPLE FRAMED
STRUCTURES

Agythe loads are generally applied to a truss at panel poinls every-
thing that has been said in Art. 5.2 aboul the constraction of
inlluence lines for girders with [loor beams and stringers remains
tene for those pertaining Lo trusses.
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All the methods used for computing stresses induced by fixed
loads (see Art. 2.4) viz., the method of moments, the method of
shears and the method of joints may be employed for the construe-
tion of influence lines,

The method of moments. In order to construct the influence line
for the stress in bar 7-9 ol the deck bridge Lruss in Pig, 66.4a we
shall pass section /-7 across three bars of the corresponding panel.
When the unit load P is to the right of joint 8, il is more convenient
to consider the equilibrium of the left-hand part of the truss as
the latter is acted upon solely by the abutment reaction (Fig. 60.4).

Placing the origin of moments al poinl ¢ and equating to zero
ZM of all the forces acting to the left of section J-I we obtain

EMs:A'Sd—L';Jl:’D

wherefrom
3.4d
h

L?Q o

Thus, when the load is applied Lo the right of joint 8. Lhe slress
in bar 7-9 equals the left-hand reaction 4 miltiplied by a constant

faclor 3% it should be noted also that 344 is numerically equal

to Lhe berding moment M} acting over Lhe cross soction of a stmple
beam situaled at the same distance [rom the suppoerls as the origin
of moments (point &) in the Lruss.

It is clear [rom the above that as long as Lhe load remains Lo the
right of point & the influence line for the stress L., will be the sume
as lor reaction 4 multiplied by '%? Hence the right-hand part

of the influence line may be oblained by laying off E}? along the ver-
lical passing throngh the left-hand abutment and by connecting
it with a point of zero ordinate at the right-hand one (line a;d in
Fig. G6.4d).

When the load is to the left of joint 6 the stress Ly can be devived
[rom the equilibrium equation relalive to the right-hand part of
the trass (Fig. (6.4e)

SMy= —B-5d+Lygh =0
giving .
Py :u;fa'
(]
In other words, the stress in bar 7-9 equals in this case the right-
hand reaction B multiplied by %d. Note that once again 5Bd is the
equivalent of the simple beam bending moment MY acting over
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a scclion corresponding to point 6. Hence for the load located to
the left from joint 6 the influence line for stress L,q may be drawn
by joining a point over the right-hand abutmmenl having for ordinate

5—: wilth a poini of zero ordinate over the lelt-hand one (line be

in Fig. 66.4d). If all the operations have been carvied out correctly
lines ¢4b and bje will intersect under joint 6. We may now shade
the area bounded by these lines between joints 6-76 and Z-0 respecti-
vely, i.e., the area acba in Fig. 66.44,

Another way of obtaining the same influence line is based on
the relation existing between the stress L,y and the simple beam
bending moment M7}

LM
78 = T

This relation indicates that the influence line for siress in bar
7-9 can be obtained by dividing all the ordinates of a simple beam
bending moment influence line by the height ol the truss A.
Incidentally, this proves once more thal lines a;b and bje must
intersect at a point lying in the vertical passing through joint 6 (poinl c).

The above example leads to the conclusion that the stress influence
lines for end-supported trusses can be obtained using the following
procedure:

1. For the right-hand portion of the influence line lay off along
the vertical passing through the left aebutment (upwards or downwards
depending on the sign of the stress) an ordinate % where a is the distance
of the origin of moments to the left-hand abutment, and h is the lever
arm of the stress about the same poind.

2. Connect this ordinate with a point of zero ordinate at the righi-
hand abulment

3. On the Line so obiained mark the intersection point of the righi-
and of the left-hand parts of the influence line, this point lying in the
vertical passing through the origin of moments,

4. Connect this intersection point with the point of zero ordinate
over the left-hand abutment,

5. Connect by u straight Line the two points of intersection of the above
lines with the verticals bounding the panel which contuins the bar unde
consideration.

The sequence ol all the operations would remain exactly similar

if instead of laying off % along the vertical passing through the

abutment 4 we started by laying oﬁ‘% along the one passing through
the abutment B where & is the distance between this abutment and
the origin of moments. Then the ordinate —z- should be connecled



7.4. Influence Lines for Siresses in Simple Framed Structures 205

by a straight line with the point of zero ordinate over the lefi-hand
abutment, the apex of the influence line should be found by project-
ing on this line the origin of moments, and finally the right-hand
part of the influence line should be obtained by connecting this point
with the point of zero ordinate at the right-hand abutment.

The method of shears. As an illustration of this method, let us draw
the influence line for the stress in the diagonal 6-2 of the same truss
{see Fig. 66.4a). The equilibrium of all the vertical projections of
forces acting on the left-hand portion of the truss (Fig. 66.45) when
the unit load P = 1 travels betwecn joints & and 70 requires that

Y =A—Dgysine =1
leading to
sin o
When the load is situated between joints 7 and 6, the same

consideralions relative to the right-hand portion of the (russ (see
Fig. 66.4c) entail

Dyy =

2Y =B+ Dggsina=10
whence
- It
Des = —ma
These two cxpressions giving the siress Dgy 1 terms ol Lhe
reactions show that when the load ig to the right of juint & the
influence line may be obtained by multiplying the reaction A by

a constant factor ﬁ, and when it has shifted to the left of joint 6

we must apply a factor (—~ —l—) to the influence line ordinates of

18101
reaction B.
Accordingly the construction of the corresponding pavts of the

inflaence line will consist in setting off the ordinates -+ ETn_o': over

the left-hand abutment and —»—ﬁ below the right-hand one and

1n connecting them with the points of zero ordinate at the other
end of the truss. This will give us the lines a;b and ab; in Fig. 66.4¢
respectively. Marking on the first line the position of joint & and
on the second that of joint 6, we obtain the right-hand (positive)
and the left-hand (negative) parts of the influence line; these two
poiuts should be connected by a straight line.

It may be observed that in this case loo the intersection point
of the two portions of the influence line falls on the vertical passing
through the origin of moments, both points being infinitely distant.
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The change in the sign of the ordinates to the influence line obtained
indicates that bar 6-9 will be consecutively compressed and then
extended as the unit load travels along the deck from joint 7 to
joint J6 as mentioned above; members designed to resist stresses
of oppusite sign are called counterbraces,

The method of joints may be conveniently used for the construc-
tion of the influence line for the stress in the vertical 6-7 (Fig. 66.4a).
Both the method of moments and the method of shears would he of
no avail in this ¢ase as any scction through the truss would cross
at least four bars (sce sections J7-IT and I1I-77T of the same figure).

Kiquating to zero the swm of vertical projections of all the forces
acting at joint 7 (Fig. 66.4/) we obtain

LY =Vig Lysinp=0
wherefrom
1'773 = —L75 sin B

and this is valid for any position of the load along the truss as it
can never be applied directly to joint 7, the bridge being of the deck
type. Hence the influence line for the stress V.4 could be derived
from that of the stress L,y by multiplying its ordinates by (~—sin B).
As for stress Lqg, it can be obtained by equating Lo zero the sin
of horizontal projections of all the forces acling on the joint under
consideralion
ZX — —Lpscos B4 Lyg =0
leading to
ot
Lo = s b
Therefore

‘V?ﬂ = — L-;.:, sin [’.’l — — L';g tan B

The same result can be achieved directly projecting all the forces
applied to joint 7 on a normal to bar 7-5.

The inftuence line for stress V,s obtained by multiplying the
ordinales of the influence line for Ly by (—tan B) is represonted
in Fig. 66.4g,

The influence line for the vertical 3-9 (Fig. 67.4a) should also
be constructed using the method of joints for again any section
through the truss cutting this bar will cross at least three more bars,

Considering the equilibrium of joint § we find immediately that

(1) when the load is applied to any joinl except joiul & (Fig. 67.44)

ZY = —Vagp=0
(2) when the load is applied to joint § (Fig. 67.4¢)
EY — —Vgg—}): 0
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and therelore _
V= —P=—1

Consequently when the wnil load is applied to any of the joinls
7.2, 4, 6 ov 10, 12, 14 and 76, the vertical &8-9 remains idle,
but when this load shifts to joint § the stress Vg becomes equal
to 1.

Knowing the ordinates to the influence line at the relevant panel
points and connecting these by straight lines we obtain the influcnce

I

5
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s L W
T
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Influeacs liae for V.
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T
| a‘ 1 f
vermnsthung fines

Fig. 67.4

line required. This line represented in Fig, 67.4d has the shape of
a Lriangie with a maximum ordinate equal Lo —1 aver joint & The
sign ol the ordinate indicates that the vertical ean be only compressed
and therelore constitutes a slgut.

Iroblem 1. Draw the influence lines for the stresses in bhars 7-8 and 7-9 of
the Pratl teess shown in Fig, 68.4q.

Solution. The influence line [nr Lgy will be obtained by the method ol mo-
ments, adopting joint 8 as the origin of moments. The equilibrium of that por-
tion of the tmss to the Teft of section k-k (Fig. 68.40) when the load is to the
right of this section reguires

IMg= A3 — Lygh=10
anil therefore

Lpr 23— 3X2 254
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Thus, the required influence line will be obtained by laying off an ordinate
erqual to 2,25 over the left-hand abutment, by connecting this ordinate with the
zivo ordimate point at the opposite end of the truss, b marking the position of
the origin of prorents (joint & on this line and finally by drawing a line through
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the zero im‘Inz at the left-hand abutruent and the point just mentioned. The
completed inlluence line will be of triangular shape with the apex directly
under joint & (Fig. 68.4¢).

The method of shears is well adapted for the construction of the influence line
for the stress in bar 7-8. Using section »-n (Fig. 68.4d) and equating to zero the
projection of all the forces acting on the left-hand portion of the truss we obtain,
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when the load P == { is Lo the right of the seetion n-n,
EY=A+4 V=0
wheneo
I”?B: —1

Similarly when the load nuity is to the left of section a-n, the equilil-

ritm of the right-liand purtion of the truss requires
I¥=B—V;=0
whers from
]‘,73=f3

It should be noled that when the loads are teansmilted through
the upper chord (as in deck bridges) the first joint to the right of
section n-n relative 1o the steess Vg is joint §, but when the loads
arc applied to the lower chord (throngh bridges) it will be joint 2.
The same will apply to joints 6 and 7, the first being immediately
1o the left of section n-x in the case of deck bridges and the second
in the case of through hridees. As the equations of equilibrium of
the lelt- and/or the right-hand portions of the truss are independent
of the level at which the loads are transmitted, the mifluence lines
for both cases will be strictly parallel, but the position of the pauul
through which scction n-n passes will vary, leading to a displace-
ment of the pancl points corresponding 1o the apices of the lne.
The influence lines in Fig. 68.4e and f correspond to the two positions
of the floor beams, the first pertaining to deck bridges and the second
one to Lthrough bridges.

P'roblem 2. Kequired the mfluence line for stress g of the truss represented
in Fig. 69.4a.

Sotution. Taking section n-n and using the method of moments (poiul A
heing taken as the origin) we find thal when the load unity is to the right of cur
section

SMp= — Aa+ Dggr =0
wherefrom
Aa

1Tere ¢ is the lever arm of the steess Dgg relative Lo point K, and a that
of the reaclion ~ aboul the same point. The distanee @ may he foumd from
the teiangle K-5-4

hy
e
; s o 32
where hg is the height of the vertical #-£ equal to - metres and tan o=
32
i

= 3 =0.1481.
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Hunco
32

@t 2= 5ohT781

= 24,0 metres a-=18 m

The lever arm ¢ equals
r={a+3d)sinfl

The angle f§ will be determined from

tan ﬂ=@= ;.2{
Using tables af natural trigonometric functions we find*

f=4950" and sin f=0.764
Using these values we find

r= {18 - % 0.764 = 20.6 metres

.‘Z«'ll:insmuling tiwe above in the formula giving Lg in terms of @ and r we
oblain

=1}.185

D55=_f§‘_"é=0.87/.41

The construction of the influence line for U, will begin with its right-hand
portion which will be formed by the line connecting the 0.874 ordinate over the

Y
n

Fig. 694

lef-hiand abutment with the zeco ordinate point al the other end of the truss,
The lelt-hund portion will be obtained remembering that the dircetions of the
L4

* The same figures could be obtained using the formala
t
sin ﬂ—_-_ﬂ.ﬂ_
V1+1a113|3
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two parls always iulersect under the orvigin of moments. Within the panel con-
tainiag section n-n a third line will connect the vertices lying under the panel
points on both sides ol section n-n. The completed influence line is shown
m Fig. 69.1b.

Problem . Reguired the influence lines For siresses Ugn, Dy and Vog
arvizing in a triangular roof truss in Fig, 70.4a when the loads are applicd to the
Jower chord.

Solution. Influence line for stress Uss. Passing section n-n and considering
the equilibrium of the left-hand part uf the truss when load unity P is to the

7
“~o . dnfluence line for vy !

il ; {i e !

sinee =/ 3
Fig. 70.1
right of the section we oblain

E.‘Hﬁ =4 Sd -]- U157=0
wherefrom

The influence line represented in Fig, 70.40 will thus have a triangular shape
with its apex directly under the origin of moments,

Infiuence line for stress Dsg. Using the same section and equating to zero
the gum of all the moments of Torces acting on the lelt-hand part.nflthtl truss ahout
point 1 we obtain, when the unit load 2 = 1 is to the right of section n-n,

Z'Jrfl - D55?‘1 =0
wherefrom
D=0

14—853
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Hence the ordinates of the influence line will reduce to zero as long as the
unit load is Lo tho right of the panel containing bar 5-6,
The lefl-hand portion of the influence line may be constructed using the
equalion of the equilibrium of moments pertaining to the right-hand part of the
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Fig, 75.4

truss, the load unity P being to the lelt of section n-n,
M= —Bl -Dygr;=0

whereirom

Dipg = e
58 1

i.e., the stress Dyg is equal Lo the right-hand abutment reaction B multiplied hy

5

14¢
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The corresponding influence line appears in Fig. 71.4¢.

Infiuence line for stress Vog. Using the method of joinis and projecting all
the forces acling on joint 7 on a horizontal we obtain

SX=—Ipeos0 —Upgeos o =0
indicating that
Uap=1Un
et P ] ___f:__I
boug Ywd godl L A I
Rysl] 7 % : i i A
- - iy - "
\-’ ES Nonr 15
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The projection of the same forces on a verlical gives

EY = —Vyg—2l8inee =0
wherefrom

VTG = ——2!;"75 sin
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Hence, the influence line for Vig may be obtained by multiplying all the
ordinates of the influence line lur o5 by a constanl Inclor (—2 sin o). The maxi-
mum ordinate of this influence line shown in Fig. 70.4e will he equal to 1.

The veader is invited to solve e following two problems on his cwn.

Problem 1. Prove the secnracy of the influence lines in Fig. 71.4.

%l’rohicm 2. (a) Prove the aceuracy of the influence lines in Fig. 72.4 through
TH.4 aud

thy draw the influcnce lines for the siresses in additional bars marked by
a double dash.

Hints, (ab 1t is recommended Lo use the method ol juints for the influence line
for atress ¥ of the truss represented in Fig. 72.4, When the load unity P is
applied Lo auy joiut with the exception of the joint over the right-haud abui-
menl, ¥y = —5. When the load is over the right-hand abutment, V, = U,

th) As regards the truss in Fig. 73.4 it is reeommended to consider the equilib-
rium of that portion ol the truss to the rvight of the section, when the load unity
is to the left thereof. It is obvious thal in this case the har undor consideralion
will remain idle.

8.4. INFLUENCE LINES FOR STRESSES IN COMPLICATED
FRAMED STRUCTURES

The design of complicaled framed structures and in parlicular
of multispan statically determinate ones may he carvied out nsing
the replacement method deseribed in Art. 4.4, whereby Lhe compli-
cated truss is converted into a simple one,

As an example let us consider the truss represented in Fig. 77.4a.
In order to oblain the influence line for the reaction € at the inler-
mediate suppoct when the load iravels along the uppor chord, let us
replace the supporl ¢ by a vertical member 6°-6 (Fig. 77.40). At
the joinl 6" we must then apply an external loree X, which will be
equal to the reaction ¢ when the stress in the substitute bar 6'-6
becomes nil

Ngg Nig— X Nag=0
wherelrom
_ N
Nuo

X.=

Here ¥ is the steess in bar 6°-6 of Uhe truss showw in Fig., 77.40
when the Toad unily travels along the upper chord and &, is Lhe
ghress in Lhe game bar induced by the force X, = 1.

Menee the influence line for the abutment reaction X, may be
obtained by dividing the ordinales Lo the influence line for stress
Ngs by (—Ngg).
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The influence line for the stress Ng.s may be constructed using
the equilibrium equations regarding joint 6 (Fig. 78.4a and b).

X = —Nyy cosa-+ Ngipcosa=0
Y == Ngp sinae - Ngp sina4-Ng-g =0
whorefrom
Ngg= —2Ng 5 sina

Substituting Ng in the expression for reaction X, we obtain

2N .. sing
Xo=—t—
Ngg

In order to obtain the influence line for Ng-5 let us pass section
II-IT (see Fig. 78.4a) and let us consider the equilibrium of the
left-hand part of the truss assuming that unit load P = 1 is to the
right of the section

. d
ZMe=A-5d—Nes =10
wherefrom
N’G'r’f = 5A sino

Conscquently, the right-hand portion of the influence line for
stress Ny may be obtained by laying off the ordinates 5 sin o =
512
2
the point of zero ordinate over the right-hand one.

The left-hand part of the influence line will be obtained remem-
bering that the lines always intersect under the origin of moments
(point O).

"The corresponding influence line for the simple truss (Fig. 78.4q)
is ropresented in Fig. 78.4d.

Let us determine now the stress induced in bar 6’-6 by a force
X, = 1 using for that purpose the equilibrivm of joint 6* (Fig. 78.4c)

2Y = .}\_-'rsrs—-{- 1 +2N3;5' sinag =0

above the left-hand abutment and by connecting it with

where

Nyy=— 51/5 (see Fig. 78.4d)

Consequently

therefore

sing
Xc': 2N’H’5' — -_— =

e Ni-sr
Ky 3X2

2Ngo VIX2  2V/3
3
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Hence, the influence line for reaction X, will be obtained by mul-
tiplying all the ordinates Lo the influcuce line for X {5 by a couslant

factor sgqual to 2'1,:2 .

The corresponding influence line is represented in Fig. 78.4e;
with its aid the influcnce lines for stresses in all (he other bars of
the truss can be casily obtained.

9.4. TRUSSES WITH SUBDIVIDED PANELS

When the method of moments is used the stress in any member
of a truss can be expressed by the formula

!
Wt
r

scetion about the origin of moments
r = lever arm of the stress & aboul the same point.

The above formula shows that other conditions remaining un-
changed, the stress N decreases proportionally to the increase in
the lever arm r. Accordingly, the increase in the height of the
truss which always leads to the increase of the Jever arm 7 will enlail
a reduction in the stresses induced in its elements,

Stracturally it is more convenient when the diagonals form an
angle close to 45° with the horizontal and therefore an increase
in the height of the truss will lead to lengthening of the panels,
Thus in a truss with parallel chords the length of a panel will usually
be very close o the truss height (Fig. 79.4e). However, panels of
increased length require the use of heavier floor beams and siringers
which may oulweight the economy obtained through the reduction
of stresses in the truss members.

A rational solution of the problem resides in the subdivision of
the panels with the introduction of secondary members, forming
auxiliary king-posted beams, which will transmit the loads applied
within the panel Lo the joints of the main truss,

These auxiliary systems will permsit the installation of cross
beams at intermediate points which provides for a considerable
reduclion in the weight of the floor elements. These systems will
remain idle as long as the load is outside the panel which they rein-
force, and will hecome stressed only while the load is within the
limits of that panel. In Fig. 79.4b we have represented a deckbridge
truss, the upper chord of which is reinforced as described above.
The bar ab iz always idle, its only purpose being to ensure the sta-
bility of the combined system.
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If the king-posts were cxtended downwards and connected to
the upper chord members we would obtain the truss shown in
Fig. 79.4c. It will be readily observed that the stresses in all the
members of the latter truss are identical to those of the fruss in
Fig. 79.4b. A gradual shoriening of all the vertical members con-
necting the auxiliary king-posted beams with the upper chord leads
to the system represented in Fig. 79.4d in which the beams coincide

e
» hl
% g .
%"% —— e %%, (b) ]
(a)
a E. :’I A b | ) b |
. B

%"”5 (c) i %’% () = g

" .
%‘b te) . %b tf) e
| H 1] i i H
N Sl N #
%5 (g) i
Fig. 70.4

with the upper chord members of the main trnss. It wo now tucn
the king-posted beams upside down we will oblain the truss shown
in Fig. 79.4e, and if in the latter the length of ks becomes nil, we
will finally obtain a deck-bridge truss with subdivided panels repre-
sented in Fig. 79.47 which in the English speaking countries is uswal-
ly called a subdivided Warren (russ.*®

+

*In Russia, trusses of that type were first used hf the eminent Hussian
engincer and scientist, Professor T. Proskuryakov of the Moscow Fnstilute of
Railway Engineering. A bridge of this type was designed by him in 1895
and built across the river Yeuisei, all the stresses in this truss having been deter-
mined with the aid of influence lines. The rigidity and the reduced weight ol
this bridge have placed it among the top-ranking engineering achievemetits
of that time.
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The secondary elements represented in Fig. 79.4f transmit the
loads applied to the upper chord to the main joints of the same
chord. In other cases these elements may transmit the loads applied
to the lower chord to the joints of the upper one or vice versa as for
instance in Fig. 79.4g.

It should be noted that auxiliary systems similar to that shown
in Tig. 80.4 cannot be regarded as constituting a genuine trussed
beam reinforcement, for in addition to vertical loads it will transmit
cqually horizontal forces to the joints of the main system.

In structures, where the secondary elements (subverticals and
subdiagonals, as they are frequently called) transmit the load to

the main joints of the same chord, all the mem-
g o bers may he regarded as belonging to three groups:

1. Members belonging to the main truss, the
stresses in which are not influenced by the pres-
ence of auxiliary systems.

R 2. Members belonging entirely to the auxiliary
g systems, the stresses in which may be obtained
AL in the same manoer as for an isolated end-sup-
ported trussed beam.
Fig, 80.4 3. Members belonging simultanecusly to the
main and the auxiliary systems, Stresses in such
members will be obtained by the summation of those pertaining
to the main and the auxiliary systems considered separately.

When the secondary members transmit the load from the upper
chord to the Iower one or vice versa, the truss members will form
four distinct groups. Three of these have been just enumerated
while the fourth is constituted by such members for which the influence
lines change depending on whether the load travels along one or the
other chord as the performance of such members is allered by the presence
of the secondary ones.

The influence lines for the stresses in members of the fourth group
will be obtained as follows: first draw the influence line for the
appropriate member of the main truss both for the case of a load
travelling along the upper chord and along the lower one, disregard-
ing the presence ol the secondary elemenis. This being done, examine
the effect of the secondary members, for which purpose shift the load
from joint to joint of the auxiliary system, noting with care to which
member of the main truss this load is transmitted.

Problem 1. Draw tho influence lines for the stresses in members 2-3, J-£°
and 4°-7 of the through hridge truss with subdivided panels represented in
Fig. 81.4a.

Solution. Start wilth the construction of the influence line for stress Vps. Tho
member 2-3 belongs to the first group and therefore the corresponding influenca
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lines may be obtained disregarding completely tho subverticals and subdiago-
nals (see Fig. 81.40). Usingiie method of joints and considering the equilibrium
of joint 3 we shall find a triangular influence line represented in Fig. 81.4c.
The subdiagonal £'-7 belongs to the second group, the stress D ., may he obtai-
ned as for an isolated king-posted beam shown in Fig. 81.4d. In this case it is
easily found that when the load unity acts at the joint & the stress in bar 4/-7
will be given by the equation

2Y==71- +Dy.qsina=0
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and whon the load shifts to the supports, the stress D 4y becomes nil. The corre-
sponding influence line is represented in Fig. 81.4e.

As for the stress in bar 5-¢' which belongs to the third group we shall pass
a section /-7 and assuming that the load unity is to the right of this section,
we shall obtain

I¥Y=A4Dypsina=0
wherefrom
A

D= ——
54 sin

This equation indicates that as long as the load is to the right of seetion -7
the inflaenco tine for Dy, may be obtained by multiplying the ordinates to the
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infitence line for the abutment reaction A4 by ( —~ oc) . Having thus obtained

the righi-hand portion of tho infloence line required, we may draw its lefi-
hand portion using the rule that they must intersect in the vertical passin

through the origin of moments and that when the load reaches the left-hanc
ahutment the ordinate to the influence line reduces to zero. In the caze considered
the origin of moments is infinitely distant, the truss chords being parallel.
Tho influence line will be completed by connecling puints g and ¢ corregpunding
to joints 5 aud § (Fig. 81.4f). 1t is interesting to note that for the tmss ol
Fig. 81.46 we should connect points e and & corresponding to joints 5 and 7
eliminating thereby the triangle abe which represents the influence line for the
membeor 5-£° ol the auxiliary system (similar to Lhe one shown in Fig, 81.4e
lor the member 4°-7).

Problem 2. liequired the influence line for the stress 13, ol the through
hridge truss shown in Fig. 82.4a,

Solution. The vertical under consideration helonging to the fourth group of
wembers, we must begin with the construetion of the influence lines relative to
this memher for loads travelling along the upper and lower chords of the main
system, reprosented in Fig. 82.45b.

For this purpose let us pass section J-f and write that TM about point &
for the left-hand part of the truss equals zero when the load unity is to the right
of this section

EMp= —Ada—Vay (a-}2d)=0
whenece

La
Wi O
o a+2d

: " i
Connecting the ordinate

o 7 at the left-hand abutment with the zero ordin-

ale at the rvight-hand one we shall obtain the vight-hand pertion of the influonce
line required. [4s lefi-hand portion will be derived from the rule that tho two
lines always intersect under the origin of moments (point ). In case the load
teavelled along the lower chord the completed influence line is obtained tracing
the counecting line through the points corresponding to joints 4 and 3
(Fig. 82.4¢) and, if the loads were upplied to the upper chord, throngh the two
points corresponding to joints 2 aud 4 (Fig. 82.4d).

These two influence lines show that when the lead iz to the lelt of juinis
I and 2 or Lo the right of joints 5 and 6, the stress in the vertical 5-4 is independ-
ent of the level of load application. Bult when the load stands over joints 3°
ot 5° of the lower chord the secondary members will transmit it entirely to the
joints of the upper one, which in cffeet is equivalent to the transfer of the load
itself. Accordingly ordinates m-m and r-n will prevail at these moments,
Nevertholess when the load moves to joint & all the secondary members become
idle and it will be the ordinate w-u in Fig, 82.4c that will give the value of the
slress Fa,.

These "m'di:mt.es will suffice for the construetion of the influence line for the
truss with subdivided panels. The required influence Iine bounds the shaded area
in Fig. 82.4e.

The following problem should be soived by the reader on his own.

Problem, (n} Check the influence lines pertaining to the through bridge
trusses in Figs. 83.4 and 84.4.
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(b} Draw the influonce lines for stresses in the members of the same trusses
marked by a double dash.

Hints. Prior to the construction of the influence line for stress Vg of the truss

in Fig. 84.4, eliminate all the secondary members, thus finding the main system

! safluence ling for r’.f,‘z upmer o Lo I
! ehard Lodded ) I
|

fa:

| |
} |

|
| Influtnce line for Vg { truss with sutuivided |
| pznels) i
i i
i |
| |
i |

fe)

represented in Fig. 83.4a. Then using the method of joints find the stress T,
relative to this system

Z¥Y = —V§—20%sina=0
wherefrom
Vig=—2U% sina

The stress in bar 8-# of the main system Is thus equal to that in bar 7-970f
the same system multiplied by a constant factor {—2sin &}. The influence linc
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for the stress Uf, is %iven in Fig. 85.4b. It has the shape of an izoscoles triangle
and its ordinate at the apex cguals

I 18 )/BEy05: 3 VE
Ix35dcosa . 4x35 <7 3 1

The influence line for VY, will have the same shape and, provided the [oad
travels along the lower chord, its maximum ordinate will equal (Fig. 85.4¢)

3V3T 2xi _3

14 1/5? T

On the other hand, when the unit load travelling along the upper chord
reaches joint § the equilibrium of this joint requires that

E¥ ==V} —2U sina—1==0

and

Vi = —2UY, sin g —1 = ._.‘;.

This influence line is shown in Fig. 85.4d.

The comparison of the influence lines of Fig. 85.4c and d indicates that when
the load is either Lo the left of joint 6 or to the right of joint Z0 the stress is
independent of the level of load application.

At the same timo any load applied to the secondary joints of panels 6-8
or 810 is transmitted to the upper chord and may be regarded as acting directly
at the joints 7. 9 or I1.

The corresponding influence line for the truss with subdivided panels is
shown in Fig. 85.4e.

10.4. THRUST DEVELOPING FRAMED STRUCTURES

i. TRUSSES WiTH INCLINED SUPPORTS

If the vertical supporting bar representing the roller support
of an ordinary truss is replaced by an inclined one, the system be-
comes a thrust developing truss as in addition to vertical reactions
it will be characterized also by horizontal reactions at the abutments.

Let us examine the arched truss in Fig. 86.4a. Denoting by V4,
# , and V 5, H ; the vertical and horizontal components of the abul-
ment reaclions 4 and B respectively and by z the distance from the
load unity to the left-hand abutment we shall obtain

/R,

Equating to zero the moments of outer forces about the hinges 4
and B we get, on the other hand

Va=-3% and V,=%
The two latter equations are cxactly the same as for an ordinary
simply supported truss or beam and the corresponding influence
lines are represented in Fig. 86.4c and d.




224 The Trusses

As regards the influence line for the theust A it may be derived
wsing the relation existing between /T and V, (Fig. 86.45)

H=Vzcolo

The influenee line for A obtained by mulliplying all the ordinates
to the influgnce line for V3 by cot o is reprosented in Fig, 86.4¢.

Influence Ling for Vj

|
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L JII 1"; il i ﬂmml‘
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(e) !_ :a||||li-I |I H‘ ‘b
{ Inf luence line for Bt 4
(f) a fT F b
|
Xx
3

’

Y e
a 1 Connecting line.
Fig. 86,4

Let us now draw the influence line for the stress in some lruss
member, say in bar 5-7. For this purpose let us pass a section [-f
and placing the load unity to the right of this section, lct us equate
to zero the moments {(about point & coinciding with joint 6) ol all
the external forees acting on the left-hand portion of the truss

SMp—=V zn—HIy + U.r;.':kk =0

wherefrom

1 1
Uss == = (Vamn—Hyp) = —- (MR —Hip)
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When the unit load is applied at point Fy lying in the same verti-
cal with the point of intersection of lines 4K and BF (point F).
the stress in bar 5-7 becomes nil, for the resultant of all the forces
applicd to the left of section /-I passes through point & and the
moment. equation becomes

EMy=Ushy =0

Accordingly point Fy is a neutral point for the stress Ugq AL the
same time the term (3% — Jly,) cntering the expression for LMy,
is equal to the bending moment in section k of a three-hinged arch.
THenee the conslruetion of the influence line [or stress Usg; may be
carried out in the game way as that for the bending moment acting
over section & of the said arch, provided all the ordinates of this
latter are multiplied by (_?}rl) Consequently, having laid olf
the ordinate (—E’;‘) over the lefi-hand abutment we must connect

this ordinate with the neutral peint f and then extend this line until
its intersection with the vertical passing through joint B. The left
part of the influence line will be obtained bearing in mind that it
must pass through the zero ordinate at the left-hand abutment and
must intersect with the right-hand part in a vertical passing through
the origin of moments. The two lines being drawn, the positions
of joint 5 should be marked on the left one and that of joint 7 on
the rvight one, these two points being finally connected to form the
completed line represented in Fig. 36.4f.

Let us now consider a truss with supports at different lovels
(Fig. 87.4a). We shall commence by constructing the influence
lines for the reactions. For this purpose we may resolve the right-
hand reaction B inlo its vertical and horizontal components Vi
and I7 4 at a point b’ situated at the same level as point 4. Denot-
ing as usual the horizontal and vertical components of reaction A
by V4 and i, and placing the unit load a distance x from Lhe left-
hand support, we may then write the equilibrium equations of the
moments first about point b’ and then about the centre of the hinge A

EMp=Vas(h+l)—1{i+l—2)=0

EMs=—Vp (£1+lg}+ 1.2=0
whence

_ hirbh—a %

Ka= e T and Vy= 5

L 4

*The influence line for Vg will permit the determinaiion of reaction /i for

any position of a vertical load using the formula B =ai‘1’13a' ‘The same result

Hpy

may be achieved with the aid of the influence line for H 5 since B S

15—5883
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These two expressions are represented graphically in Fig. 87.4¢
and d which show that the vertical reactions of the truss vary exactly
in the same way as those of

T a simply supported beam with
o /| aspan of I = I, = I, (Fig. 87.48).
b i ko (. The horizonlal projection of

A --;--}L--J‘r 02 41l the Jorces acling on the truss
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Fig. 87.4

The relation between H and ¥, may be found by equating lo
zero the sum of their moments about hinge C (Fig. 87.4a}

EMe=—Vgla+Hf=0
wherelrom
Vily
i
Lo this expression Vpl, = Mg is the bending moment acting over

section € of a simply supported beam, spanning (I, - &), when
the lond P is to the left of this section. Consequently, the thrust

Il =

i equals M—r which is exactly the same as in the case of a three-

hinged arch with a span of (I; — I,) and a rise cqual to f (Fig. 87.4e).
It is apparent that the influence line for A obtained by multiplying
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all the ordinates of the line for Vg by —E-f— will coincide with (hat

for the thrust of an arch shown in Fig. 87.4f.

The influence line for the siress in bar 2-4 of the same truss may
be obtained passing a scclion 7-7 (Fig. 83.4¢) and writing that
ZM abont point § equals zero when load P =1 is to the right of
this seclion

EMs;=V ay3— Hyg—Lyr =0
wherelrom

; | ;
Law=+(V ats—Hys) =~ (W3 — Hy,)

When the dircelion of load 2 passes through point F (Fig. 88.4a)
the stress in bar 2-4 will reduce to zero, for in this case poinl 3 will
fall on the line of action ol the resultant of V, and //,. Knowing
the position of the neutral point and using the above expression
for L,,; the influence line is readily drawn, especially il we take
heed of the analogy existing between the expressions for L,, and
for the bending moment acting over a corresponding seclion of
a three-hinged arch {see Fig. 32.3f). As the first differs from Lhe latter

only by a constant factor % the influence line relative to the right
part of the truss may be obtained by laying off an ordinale —"ri over

the left supporl and by connecling it with the projection of neutral
poinl on Lhe horizontal, which gives us line a,f (Fig. %8.4b), The
line corresponding to the left part of the truss will be drawn using
the well-known rule that the two must intersect in a vertical passing
through the origin of moments (point 3). The influence line for D,
obtained in a similar way is shown in Fig. 88.4c.

Iniluence lines for web members of arch trusses with parallel chords
can be obtained by projecting the stresses acting in all the members
cut by a section on a normal to the chords, the method of moments
being inoperative in this ease as the chords intersect at a point infini-
tely distant.

For instance, the ordinates to the influence line for stross Dyg of
the truss represented in Fig., 89.4a can be found by ecquating to
zero the projections of all the lorces acting to the left of seclion
I-I on a normal Lo the direction of the chord members 5-7 and 4-6*

LY —Vacosq¢—I sing— Dygcos (m—q) =10
L 3

*11 should he remembered that , = J7y = H und that stresses in the hori-
zontal deck members remain nil as tong as the foads remain vertical.

15%
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wlhere p=angle between the chord members and the horizontal
o =angle formed by the diagonal 5-6 with the vertical.

Conpecting Line
\H TP

cored
05— P)

Influence line
| D34 1|

From this equation we obtain

i s
Dyg= g (Vacosg—H sing)
or
1

Dw= tosta=—w

(Q% cos p— I siu @)

where QF is the shear in a simply supporled beam of Lhe same span.
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The term (Q} cos @ — I sin @) being identical with the expression
of Lthe shear acting over a cross seetion of a three-hinged arch, the
influence line relative to the right part of the truss can be constructed
in the same manner as that for the shear in an arch (sec TFig. 33.34d).

This means that an ordinale equal to —-F —
cOs (o —1p)
niust be connected with the neutral point f determined by projecting
on the z-axis the point of intersection of lines 4'B and AF (in this
particular caso line AF is parallel to the chord members 5-7 and 46
and passes through point B), The line relative to the left part of the
truss will be parallel to the one perlaining to its right part due to
the parallelisin of the chords.

The completed influence line for stress D¢ is represented 1n
Fig. 89.4b while another influence line namely that for stress Dy
obtained in a similar way is represented in Fig. 89.4c.

over the left abutment

2. THREE-HINGED TIRUSSED ARCHES

Were the right-hand supporting bar of the truss shown in
Fig. 87.4a replaced by some framed system such as system CB

[

Fig. 90.4

(Fig. $0.4) we would obtain a three-hinged trussed arch, consisling
essentially of two pin-connected trusses with immovable hinge
supports.

Let us examine a three-hinged areh with supports at the same
level represented in Fig. 91.4a. Both vertical reactions and thrust
for such systems are determined in exactly the same way as in the
case of solid arches. Thus, for a load unity situated a dislance x
from the left abutment, reactions V4 and V 5 will amount to

Va=15% and Vo=

while the thrust / will equal ﬁ where Mg is the bending moment
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acting over the corresponding c¢ross section of a simply supported
beam ol the same span, carrying the same load.

The influence lines for the vertical reactions and the thrust are
gshown in Fig. 91.4b, ¢ and d.

As regards stresses induced in the separate wembers of the
semi-arches it is clear thal as Jong as the Joad is applied directly
to the semi-arch under consideration the other one may be ficti-
tiongly replaced by an inclined supporting rod. Tn other words,
the system may be reduced to the case of a simple truss with supports
at different levels, which has been just examined.

The construction of influence lines for the stresses in mewmbers
of such trusses is already lamiliar to the readec who will casily fol-
low that of the inflnence line for Ly, shown in Fig. 91.4e. It remains
1o find ou$ what happens when the load shifts to the other semi-
arvch. In Lthat case the load may be resolved inte two componenls,
the first of which is applied al the crown hinge and the olher to
a joint directly over the abutment at the oppogite end of the arch.
The ordinales to the influence line when unit load P acts over the
crown hinge and the abutment are well konown and equal ¥,
(Fig. 91.4¢) and zero, respectively. Accordingly, in the case of bar
2.4 when the Toad travels from hinge € towards the right, the stress
will vary linearly from y. to 0 in accordance with the expression

Loy et 0

The corresponding inflluence line will be represented by Lhe straight
line connecting y, with point b as shown in Fig. 91.4f.

Several influence lines for stresses in members of different trussed
arches are represented in Fig., 92.4. Two of these systems have their
cnd supports at different Jevels. In systems of the latler type it is
more convenient to resolve the abutment reactions along a vertical
and a line which connects the abutment hinges (Fig. 93.4). The ver-
tical reactions V4 and Vi will be determined from the well-known
equalions

1— x

Vi= lx and V="

The components Z, and Zp of the abutment reactions when
only vertical loads are involved will be given by
M,
ZA;'ZB:z-“:_h
where h is the lever arm of component Z aboul the crown hinge C.
The thrust i is casily found from

H=~Zcosu
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where « is the inclination to the horizontal of the line passing throagh
the abulment hinges A and B,

fal

Pig. 94.4

This enables us to rewrite the expression for the thrust as follows
, Mo MG
Jf:Zcosa.:T €OS OL == ~—=—
cosa

As the term . represents the length of the vertical insert bel-

¢O08 o

ween the line connecting the abulment hinges and the crown hinge
we may denote it by f whereafter the expression for /f will become

MI.I

H==2

7
The reader is invited to check the accuracy of the influence line

for the thrust A of the trussed arch represented in Fig. 94.4.
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11.4. VARIANTS OF TRUSSED ARCHES

Lel us consider the trussed arch with elevated tie provided with
one fixed and one roller support as shown in Fig. 95.4. This statically
delerminale arch may he obtained by replacing the inclined bar
of the right-hand abutment support by the tie ¢b absorbing the thrust.

Tho method of stress analysis for similar tied arches is illustrated
hereunder using as an example the structure represented schematical-
ly in Fig. 96.4a. The influence lines for reaclions ¥, and V , are of
the usual triangular shape with ordinates equal to unity under the
supporis as shown in Fig. 96.4b and ¢. The influence line for the
fovee I in the tie (cquivalent to the thrast /) will be readily deter-
mined by equating to zero the moments (about crown hinge () ol
all the [orces to the left of section 7-I when load unity P is to the
right thercof

SMe=Vy4 -2‘——;-;; i
i 5

wherclrom

Val MY
M =
21 i
When the load is applied to the left of the section the equation
hecomes

IMg=—Vyg+Hi =0
It

and

Vel M

2f 1

Accordingly, the influence line for the force # may be obtained
by multiplying the ordinales of the bending moment M acting
aver section C of a simply supported beam by a constant faclor % :
This influence line is represented in Fig. 96.4d.

The iofluence line for stress L, (Fig. 96.4a) may be oblained
passing section F7-I7 and writing that M about point & of all
lorces to the lefl of this section equals zero

EM_& = V;,tlk—f.{f -—-.L&h ==

H=

wherefrom
1
L‘ = T (VAl‘Ik -—Hf]

The neutral point corresponding to L, will fall oo the vertical
passing through the intersection of lines g,k and §,C. The completed
influence line for L, is given in Fig. 96.4e.
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The reader is invited 1o draw the influence lines for stresses in
other members of the strueture.

Let us now consider a system consisting of two pin-connected
trusses and a multihinged arch, two variants of which are shown
in Fig, 97.4a and b. It is easily proved that such systems constitute
unyielding combinations and remain statically determinate. Methods
of stress analysis for these systems will be shown using as an example
the structure in Fig. 98.4a.

As uvsual the influence lines for vertical veactions ¥V, and Vy
will be triangular in shape with ordinates equalling unity at the

i

.(/” /J-—J—--L\( E;
% \

AT T

(8)

i

Fig. 97.4

supports (Fig. 98,45 and ¢). It is easy to prove that tho horizontal
components of stresses acting in all the members of the multihinged
arch ASB remain constant throughoul the system for any given set
of vertical loads applied to the trusses 4¢ and CB. For this purpose
consider the equilibrium ol any joint (say, joint n — 1 in Fig. 98.4d).
Projecting all the forces on the horizental we get

EX=—N,cosa, | N,cosa,=0
wherefrom
Ny ycosoy.y =N, cost,
where
Ny €08 Oty = Iy
and

N,coso, =10,
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Therelore
Hyy=H,—II

2 T . s

ﬁ'ﬂ_i'——m : n efe.

=m 5
I'rojecting the same forees on the vertical we ohtain
Y =Htang,—Hlano, —V, =0
wherefrom
Vo =0 {tan o, —tan o)

The above expressions indicate that the influence lines for'stresses
in all the separate links of the arch as well as in all the verlicals
or suspensions will have the same shape as the influence line for the
thrust .

As for the latter, it may be obtained by passing section I-7 (sce
Fig. 98.4a) and by equating to zero the sum of moments alwoul
the erown hinge € of all the forces applied to the lefl of the section,
the stress NV, 4y acling on hinge S having been previously resolved
into two components ff and / tan o, 4,

SMo =V Hf=0
wherelrom

ro _Yal Mg
ey

The negalive value of /I indicales that all the links of the arch
are compressed. The influence line for H is a triangle with its apex
turned downwards and situated dircctly under the crown hinge
C (Fig. 98.4¢).

Let us now construet the influence line for stress I7,. For this
purpose we shall pass section F/-Ff cqualing Lo zero the moments
of all the forces about point m when the load unity acts to the right
of this seetion

Eﬂfm = -VA Ty e {fr..h_-fi (y?ﬂ _}_ k’) =1
whereirom
o { i 1 : L
&, ~ ‘—r”’ Al —H (ym R} = % [Ma—H (Y —R)]

I, will be observed that the terin in brackets represents the bending
moment acling over seetion K of a fictitions Lhree-hinged arch of
the same span whose crown hinge coordinates are cqual to -—;— and
/ while those of the centroid of section K equal ¢, aud (y,, + &).
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This will enable us Lo find the position of the neutral point pertain-
ing to the influence line for &7,. For this purpose we shall first locate
the centroid of section K along the vertical passing through the ori-
gin of momenls m {Fig. 98.4e) aftor which the lines 4 X and BS
may be drawn, their intersection determining the abscissa of the
neutral point required. The completed inflluence line for U/, is shown
in Fig, 98.4/.

In order 1o construct the influence line for stress D, in one of
the diagonals let us equate to zero the sum of verlical projections
of all the forces to the lelt of section F7-I7 (sce Fig. 98.4a) when
the unit load is to the right of this section

Y =V, —Htana,—D,sinf=10
whence

; 1
D, = g (Vi—1 tanay,)

The latter equation shows Lhat the required influence line ean
be obtained through the summation of the ordinates to the influence

line for 3:::‘8 with the ordinates to the influence line for the thenst

I aultiplied by (_%%) .

The neutral point method can be used for the construction of
D, influence line too. For this purpose we must first find the position
of the unit load for which the expression (V4 — H tan o,) redoces
to zero. In this cxpression ¥V, and £ can be regarded as the vertical
veaction and thrust of a fictitions arch of the same span as the actual

structure and having for coordinates of the crown hinge % and f
{Fig. 98.4g).
The position ol the neutral point will be derived from

1
D, =T (Va—IHtane,)=—0
showing that
Va__ .
i lan ¢,

The latler condition may be fulfilied only if the left-hand abui-
ment reaction A of the three-hinged arch forms with the horizonlal
an angle «,. The neutral point will be situated at the interseclion
of this reaction with reaction B of the fictitious arch, the latter acting
necessarily along a line passing through the crown and the right-
hand abutment hinges, The completed influence line for stress D,
is represented in Fig. 98.4A.
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Let us now examine a slructure in which the two trusses surmouni
the muitihinged arch as shown in Fig, 99.4a. This system is geomet-
rically stable and stalically determinate, its main peculiarity resid-
ing in the fact that it takes support at four disktinct points 4*, B”,
A" and B,

The lollowing procedure may be recommended for the determina-
tion of the abutment reactions: the directions of the extreme links
of the multihinged arch should be oxteaded until their intevsection
with the verticals drawn through the centres of the abutment hinges
A and B’ of Lhe trusses. Here the reactions arising in the extreme
links may he resolved along a vertical and a horizontal direction
into two components Vi, /., and Vi, If p, respectively (Fig. 99.4a).
As alveady shown in the beginning of this acticle I/, = /1 , = /.

Ilaving denoted by Vi and Vi the reactions at the supports A4°
and B and by V4 and V5 the tolal vertical reactions of the whole
syvstem we have

Fa=Vi4+TV%; Ve=Vh--Vph
The equalion expressing the eguilibrivin of the moments about
the poinl of intersection of Vj, and #f 5 gives
EM =V l— Mg =0

whercfrom

Va=Vj+ V="t

where Myxe is the moment of all the external loads acting on the
structure about the same point.

I't follows that the sum of the vertical components of reactions Vi
and Vi is equal 1o the reaction of a simply supported beam.

The thrust A will be conveniently determined by equating to zero
the sum of moments about the central hinge § of all the forces acting
on Lhe left (or right) half of the structure when the load unily is
Lo the right thereof

SMg==V,+— Hf—M5=0
wherelrom
MY
f
M5 being the bending moment acting at midspan of a simply sup-
ported beam carrying the same load.

Consequently, the influence line for the thrust H will have the
shape of an isosceles triangle represented in Fig. 99.4b. The vertical

H=
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reactions V7 and Vi can be also expressed in terms of the thrust #
Vi=Htang and V= H tan ¢

It follows that the influence lines for these two reactions will
take the shape of the triangle shown in Fig. 99.4c. The reaction
V4 will be deducted from

Va=Vai—Va=Vs—Htang

This expression shows that the required influence line may be
obtlained by the summation of the ordinates of two other influence
lines, namely, that for the abutment reaction of an end-supported
heam and that for the thrust #7, the latter being multiplied by
a constant factor (—tan ¢). As is well known, the first of these two
influence lines is a right iriangle with an ordinate equal to unily
over the left-hand support.

The influence line for ¥, could be also obtained by the ncutral
point method. The position of the neutral point is conditioned by

Vi =Va—Htan =0

showing that the ratio %} must be equal to tan @. The latter condi-

tion will be fulfilled when the resultant of V4 and X (e.p., the left-
hand reaction of the fictitious three-hinged arch represented in
Fig. 99.4d) will be at an angle of ¢ to the horizontal. Thus, the
position of the necutral point relative to the reaction ¥ will be
determined by the intersection of the abutment rcactions 4 and B
of the said fictitious arch. It follows that in order to draw the influ-
ence line for ¥4 by the neutral point method, an ordinate equal to
unity should be laid off along the vertical passing through the left
abutment; this ordinate should be then connected with the neutral
point and extended until the intersection with the vertical passing
through the crown hinge, the ordinate so obtained being finally
connected to a point of zero ordinate at the right-hand support
(Fig. 99.4e).

IT it were required to construct the influence line for the stress
acting in some chord member of the truss, say, member (n — 1) n
we should proceed as follows. Having passed section 7-I and equating
to zero the moment about hinge % of all the forces acting on the left
part ol the truss we obtain

EMr=(Va+V2) an—Hyn—Lyh =0
wherefrom
My

Ly =1 [(Va-+V3) an—Hyal ==

t0—453
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In this expression M}, is the bending moment acting over seclion
k ol a three-hinged arch whose span I equals that of the strueture
involved, while the centroid coordinates equal a5 and yz. The com-
pleted influence line obtained by Lhis method is represented in
Fig. 99.4f.

Let us consider now the constraction of the influence line for the
stress arising in one of the web members, say, in the diagonal kn
of Fig. 99.4a. As long as the load unity remains to the right of
section I-7, the stress D, will be determined by the equalion

Y =Vi—Dysinae—If tang, =0
wherefrom

D, = T —— (Va—fl tan q,)
indicating that the neutral point will be localed in the line of action

P

of a load rendering EHL = tan @,.

As has already been mentioned, Lhis becomes possible when the
rosultant 4 of V4 and #, in other words, the left-haud reaclion
of a fictitious three-hinged arch in Fig. 99.4d, is inclined through
an angle ¢, lo the horizontal. Hence the neutral point will be detler-
mined by the intersection of a line passing through the lelt-hand
abutment at an angle g, wilh the horizontal and a line connecting
the righl-hand abutment with the crown hinge. The inflluence line

for stress D, will be obtained by laying off the ordinate ﬁ over

the left abutment and by connecling this ordinate with the projection
of the neutral point on the z-axis.

To find that part of the influence line relative to the lelt portion
of the semistructure, a line parallel to Lhe first should be drawn
through the zero point at the left abulment wherealter the position
of the joints & and »n shall be marked on these Lwo lines and counceted
together. That portion of the influcnee line corresponding to the
right half of the strueture will be ebtained by connecting Lhe ordin-
ate at the crown hinge with (he zore poinl over the right-hand abul-
ment. The completed line is represented in Fig. 99.4g.

Influence lines for any other web member or vertical connecling
the multihinged arch with the truss can be obtained in a similar way.
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1.5. GENERAL

In a most general way ol speaking the Lerm space framework indi-
cates three-dimensional through structares capable of resisting
loads in different planes.

Certain ol sich structures may be reduced, for a given arrange-
menl of loads, to a combination of plane structures (trusses), which
simplifies greatly their design.

Thus, the bridge truss shown in Fig. 1.5a can be reduced to two
vertical plano trusses ABCD and MNFE when the loads 2 are
symmetrical about Lthe longitudinal axis of the structure. However,
if the same truss were loaded unilaterally, it should be considered
as a space structure, the lorizontal trusses AMNRB and DEFC
transmitting part ol the load from one vertical truss to the other.

The threc-dimensicnal structure of Fig. 1.5 supporting a wator
tank is Shukhov's hyperboloid which cannot be reduced to any
number of plane structures and must be designed as a single unit.
The same applies to the Schwedler dome illustrated in Fig. 1.5¢.

The different members of space frameworks are usually connected
together by riveted or welded joints. providing a certain degree
of rigidity. However, computations taking into comsideration this
rigidity become exceedingly cumbersome, and therefore in actual
design work such structures are always regarded as articulation-
connected (differing thereby from three-dimensional framed bents
in which all the joinls are made and regarded rigid).

The articulations of space framed siructures must allow rolalion
around three mutually perpendicular axes thus providing Lhres
degrees of freedom as compared to the single one of the pin joints
of plane trugses. Accordingly, all the members of a space structure
meeting at one joint can rotate about any line passing through the
point ol intersection of their axes, whilst those of a plane truss may
do so only about an axis perpendicular to the plane of the Lruss.

On the other hand, the arrangement of the individual members
of a space framework must be such that they should [ocn an unyield-
ing combination just as in the case of a planc one.

16%*
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Consequently, a space framework is a geomelrically stable
structure, consisting of a number of bars situaled in different planes

(a) |§H | ””
(o) il ‘ .:.!
| \I\ i L
£
T
g [
“\\N A L

Fig. 1.5

and connected together by so-called universal or bell-and-socket
joints. When such a structure is subjected to a system of loads
acting at the joints, no flexural stresses are induced in any of its
members which become directly extended or compressed.

Any system of noncoplanar forces in equilibrium must comply
with six statical equilibrinm equations which may be grouped
together into

three equations of projections

IX=0 Y =0; 27=0
and three equations of moments
IM,=0; oM, =0, IM,=0
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In statically determinate systems these equations are always
sulficient for the computation of all the reactions at the supports
and of all the stresses in the individual members.

It must be borne in mind that the solution of these equations
becomes the easier, the smaller the number of unknowns in each
of them. Therefore, it is advisable to seek such systems of equa-
tions in which each contains no more than one unknown (two at
the utmost).

2,5. SPACE FRAMEWORK SUPPORTS

Space frameworks are connected to their foundation or any other
unyielding system using three different types of supports:

(1) the spherical movable support (Fig. 2.5),

(2) the spherical roller support {Fig. 3.5),

{3) the spherical fixed support (Fig. 4.5).

The first consists of two flat parallel slabs with a ball in between,
This type of support allows rotation about all the three axes z,

(a) (b)
Fig, 2.5

y and z. as well as the displacement along any direction lying in
the xy plane. Only the displacements along the z-axis (both upward
and downward) are prevented. (The arrangement precluding upward
d1splacemunt is not shown in Fig. 2.5). Thus only one constraint
is impesed by a support of that type, a vertical reaction R, being
developed along the direction of this ‘constraint. The convemional
schergat})c representation of a support of the first type is shown in
Fig. 2.3b.

The second type of support consists in principle of two rockers,
the upper and the lower, with a ball inserted in their sockets; the
lower rocker bearing on rollers which lie on a slab provided with
lateral ribs, Similar ribs existing on the lower surface of the rocker
make any lateral displacement of the two impossible.

This type of support permits free rotation about any axis pass-
ing through the centre of the ball and a longitudinal displacement
in a direction perpendicular to the roller axes. It prevents displace-
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ment along iwo directions, one heing perpendicular to the plane
of the roller axes and the other parallel to their axes, thus imposing
two constraints on the body it carries. Two reaciions, R, and R, or
2, and R, (depending on the position of the rollers) will develop
at a support of that Lype. Tts conventional representation is shown
in Ilig. 3.56.

The fixed spherical support (Fig. 4.54), occasionally relecred
to simply as spherical support, consists of a pair of similar rockers
wilh a ball, but no rollers, so that the upper rocker can enly rolake
about any axis passing through the centre of the ball, but cannot
move in any dircetion. A support of this type will impose three
constraints, hence, three reactions R,, R, and R, may develop.
Schematically this support is represented in Fig. 4.55.

The minimum number of constraints necessary to maintain a body
in a fixed position is always equal to the number of equilibrium
cquations. Therelore, in the case under consideration this number
will equal six and the simplest combination of such constraints is
shown in Fig., 5.5.

The body [ is provided with a fixed spherical support at point €
and a roller support at point B which leaves the body free to rolate
only about the axis BC. This last degree of freedom will be
eliminated if a movable spherical support is added at a third point
A, provided point A does not fall on the line BC.

It the structure proper does not constitute an unyiclding combi-
nation the number of constraints at the supports should be increased
accordingly. As an example, let us consider the hinged quadrangle
BB3,B,8, in Fig. 6.5a. If it were attached to the ground at three
corners using as herctofore three supports of the different types
deseribed, it would conserve two degrees of freedom, for its shape
could be altered in its own plane, and furthermore it counld fold
around one of the diagenals, The system could be made immovable
by adding two constraints and effectively, four supports of the roller
type as shown in Fig. 6.5a will provide the required stability.
Indeed, point By can move neither along the vertical, mor along
the direction BB, due 1o the constraints developed by the support
al this same point; at the same time the displacement along BB,
is made impossible due to the presence of a horizontal constraint
at point B,. Accordingly, joint B; is fully immobilized. The joints
By, 35 and B, are connected to the first onc and to the ground using
a sufficient number of bars (constraints) to make the whole system
completely stable.

The position of the supports must be judiciously choseu, for other-
wise it may happen that one part of the structure will have redundant
constraints and will become statically indeterminate, while the other
part will retain one or more degrees of freedom. An cxample of
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a faulty distribution of support comstraints is given in Fig. 6.56.
The direction of the horizontal constraints at joints 8, and B, coin-
cides with that of point C, these two constraints become redundant,
whereas both joints B, and B, are free to move towards 4. This
could be corrected by shifting the constraints marked with a cross
to new positions indiecated in dash lines.

3.5. THE FORMATION OF STATICALLY DETERMINATE SPACE
FRAMEWORK

The simplest unyielding plane system is constituted by a triangle
ACE shown in Fig. 7.5¢. Let us add joint D using two bars AD
and €D as indicated in Fig. 7.5b. The system obtained will be
unstable, fov triangle ADC can rotate about AC. Tn order to obtain

(a) () (¢}
Fig, 7.3

an unyielding combination, a third bar not lying in the plane of
ADC should be introduced, say bar BD (Fig. 7.5¢).

The pyramid so obtained is the simplest three-dimensional framed
structure; additional joints, each connected to the already existing
system by three separate noncoplanar bars, may be introduced
to form new structures, which will remain statically determinate
and unyielding.

Let us now examine the relation existing in a space framework
as described above between the number of joints, the number of bars
and the number of constraints at the supports. Let S be the number
of bars, §, the number of constraints and K the number of articulat-
ed joints. The total number of the unknown stresses and reactions
will then equal (§ 4 §;) and the total number of equilibrium eqna-
tions which may be used to find these unknowns is 3K, for at each
joint we may equate to zero the z, y and z projections of all forces
(internal and external) applied to this joint.
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Hence the number of redundant members and/or support con-
straints ¢ will be given by

i=84+8,—3K (1.5)
When i >0, the system is statically indeterminate, when i << 0,
the system is unstable, and only when i = 0 the system may remain
statically determinate and form an unyielding combination.
However, this condition though necessary is not sufficient, for
the equation
S+ 8—3K=0

permils the determination only of the number of bars and support
constraints required, but furnishes no information on their mutual
position. The latter must be known in order to determine whother
the system is statically determinate or not.

In the casc ol the simplest structure shown in Fig. 7.5¢ we have:
S =6; 8§ =6; K =4, the expression (1.5) showing that in this
case i =0 4+ 6 —3 X 4 =0 and therefore the requirement stip-
ulated above is satisfied assuming that the constraints at the sup-
ports (not shown in Fig. 7.5) are the same as in Fig. 3.5. However,
the same results could be obtained for the structure given in Fig. 8.5
which differs from the one just mentioned by the fact that bars AD,
BD and €D lie in one and the same plane, thus making the whole
structure instantaneously unstable, for joint D can move along
a normal to the plane ABC.

Accordingly, having made sure that i = 0, the stability of the
system must be examined by the method of zero load described for
plane structures in Art. 6.4. As will be remembered, this method
consists in the computation of stresses in all the members of the
system at zero load; when these stresses are nil, the system is geo-
metrically stable, but when they are indeterminate and may differ
from zero, the system is instantaneously unstable.

In the case of the structure shown in Fig. 7.5¢ it is easy to prove
that at zero load all its members remain idle. Indeed, separating
joint D and projecting the stresses ¥V, ¥, and N3 acting in members
AD, BD and CD respectively on a normal to plane ADC (Fig. 9.5)
we obtain N, cos f = 0, wherefrom N, = (. The same reasoning
shows that the stresses in all the other members of the system are
also nil, which means that the structure forms an unyielding combi-
nation,

But if we apply this reasoning to joint D of the system shown in
Fig. 8.0 we obtain

Ny xO04Ny X0+ Nyx0=0

which is an identity satisfied for any values of WV,, N, and N;.
The remaining two equilibrium equations which jmay be written



250 Space Framework

for this joint will contain three unknowns whose values therefore
remain indoterminate. This indicates clearly that Lhe system is
instantancously unstable.

Let us now examine the structure represented in Fig. 10.5. We
have in this case

§y=8; 8§=16; K=8; i =84-16—3x8=0

and thus the system may be statically determinate. Applying again
the zero load method we shall starl by separating joinl 4 and by

Fig, 8.5 Fig. 9.5

projecting stresses ¥y, Ny, N, and V; on a normal to planc 4 CB,B,.
This leads immediately to ¥V, = 0. Proceeding now to joint E we
may easily prove that all the bars meeting at this joint remain idle.
Pussing consecutively to points D, C, By, B, and B, and consider-
ing their equilibrium, we shall find that all the other bars of our
structure remain unstressed, which proves that this structure is both
stalically determinate and geometrically stable.

The system which we have just examined does not belong to the
category of simple structures for it is impossible to dismaotle it by
the successive elimination of joints, each connected to the remainder
of the system with the aid of three bars only,

Such systems are termed complicated and may be obtained by
replacing one or more bars of a simple system by a corresponding
number of differently situaled members. For instance, if in our
system we replace the diagonal AB, by a diagonal B,C (shown by
a dotted line) we shall be able to take the structurc down by elim-
inating successively joints 4, E, D and €, cach with three con-
necting bars. Thus the complicated system shown in Fig. 10.5 in
solid lines can be obtained by altering the position of only one
bar in a simple system.
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In conclusion lel us cxamine the plane truss represenied in
Fig 1£.3, all the joints of which ave of the universal type. 1 we

I~ WS U v

AN e
Fig. 10.5 Fig. 11§

assume that the central triangle of this truss is rigidly connected
to the ground by means of 6 support constraints we have

S=11; S4=6; K=17; i=H+0—-3xT=—4

Thus the system is unstable and has four degrees of Irecdom;
indeed, it may fold along lines J-I, II-IT, ITI-T1I and /V-IV.

4.5. STRESS ANALYSIS IN SPACE FRAMEWORK

The following three methods are in use for stress determination
in slatically determinale space frameworks:

(a) the melhod of sections,

{b) the method of bar replacement,

(¢) the method of reducing the space structure to a series of plane
ones.

We shall examine each of these methods in turn.

(a} The method of sections. This method is used for the computa-
tion of stresses in the members of simple framed structures and
consists essentially in passing a section through a certain number
of bars in which the stresses are sought. The portion of the struc-
ture removed is replaced by the internal forces acting along the
seclioned bars, these forces being then determined with the aid
of equilibrium equations. In general six equations of statics may
be written for each section and therefore the number of unknown
stresses determined for a single section may not exceed six.

Depending on the equilibrium equations used and on the posi-
tion of the section itself this method may be subdivided into:

(1) the method of moments,

(2) the method of shears,

(3) the mcthod of joints.
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In the first of these three methods the equilibrium equations are
obtained by expressing that the sum of moments of all external
forces acting on a body in equilibrium about some preselected
axis is always nil. As its name implies, this method is very similar
to the method of moments described in Art. 2.4 for plane structures.

As an illustration of this method, let us determine stresses N,
and ¥, acting in the legs of an elevated tank appearing in Fig. 12.5.

Having passed the section m-m we

T may equate to zero ZM of all the

Ll forces acting on the upper portion of

the structure about the axis J-/. The

stresses N; and N, are regarded as

applied at point 4, where their resul-

-m  tanl is resolved into a vertical and

a horizontal component. This leads
to the following egquation

IMy=WH—Qa—(N,+N,) ¢sina =0
where the angle o 1is given by

e ol
anu—b

Owing to the symmetry of Lhe
loading, N,=N, and therefore

o s U0
Ni=Ne= e

Fig, 12.5

The second method is analogous
to the method of shecars used in the
analysis of plane structures. In this case the equilibrium equa-
tions express that the sum of projections of all external forces on
some conveniently chosen axis is nil. This method will be made
quite clear if we consider the cantilever truss represented in
Fig. 13.5. Joints 4, B and C of this truss are rigidly fixed by means
of six support constraints (not shown in the drawing). Using expres-
sion (1.5) we find that

i=848,—3K=154+6—3xT=0

and since under zero load all the bars will remain idle, which be-
comes immediately apparent if joints 7, 2, & and 4 are isolated in
succession, the system is statically determinate and forms an un-
vielding combination.

In order to determine the stresses ¥y and N, acting in the diago-
nals let us pass section R and assume that the projection on tho
z-axis of all forces applied to the right-hand portion of the truss
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is nil
2Z=—P+(Ni+Ny)gina=0
Taking the moments of N, and N, about the z-axis we obtain

SIM.=Nasina—Naasina=0
and therefore
N,=N,

In this case the solution of 2Z=0 yields

P
r_ar P
Ny=Ng = 2sina
When the section passed separates only one joint we obtain the
method of joints. The equilibrium equations used in this case do
not differ in principle from those used in the previous one.

R
z
A 4 4
A @ A
e == 4 "‘f?
==X ¥ i !/
X
L
'
P
¥
Fig. 13.5

We shall use this method to determine the stress N; acting in
bar Z-2 of the same truss (sce Fig. 13.5).

Separating joint 7 and equating to zero the sum of forces pro-
jected on the z-axis we obtlain

2Z=—P4 Ngsinp=0
wherefrom
r P
Ny = sin fi
The method of joints is particularly well suited in the following
cases:
1. When three bars meet at an unloaded joint. In this case as
previously mentioned (see Fig. 9.5) all three bars are idle.
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2. When all the bars meeting at a joint, with the exception of
one, liec in the same plane. If no load is applied Lo such a joiat or
if Lhis load acts in the said plane, the stress in the mcember which
is outside this plane will be nil,

(0) The method of bar replacement. The method can bhe advanta-
geously used for complicated space systems when it is impossible
to pass a section cutting six bars omly, thus making the method
of sections practically inapplicable. The basic principle of this
method derives from the fact that any complicated statically deter-
minate syslem can be reduced to a simple one by replacing one
or more bars.

Let us take up the case of a complicated system which can be
converted into a simplc one by the replacement of one bar only.
Let X be the slress in the bar to be replaced. Having introduced
the substitute bar, let us consider the simple structure so obtained
under the aclion of the given set of loads and of the load X applied
along the direction of the bar replaced. Denoting by V,. V.
and ¥, the stresses induced in the substitute bar by the loads
aclually applied, the force X and by a load unity acting in the
direction ol X, respectively, we may write

Arx:XNx
The combined stress in the substitute bar may be then expressed
by N,--XN.. As in the actual structure thizs bar is abscnl,
we must equate this stress to zero
Np+XN,=0
which leads immediately to

X=—= (2.5)

Once the value of X ig known. the stress in any member of
the structure will be easily fonnd nging the formula

ﬂ’yk R -"V.F.-. p 1 Fk.‘x’~X ('J)S)

where Ny, - slress induced in member & of the simple structure
by the actual set of loads P
N == stress in the same member induced by the load uni-
ty X = 1.

The same procedure can be followed when the conversion of (he
given sysltem ko a simple one vequires the replacement of several
bars. In the lalter case the determination of stresses in the bars
which are being replaced will require Lhe solution of several equa-
tions with several unknowns equal in number to that of the bars
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just mentioned. It will be readily scen that in this respect there
is no dilference between space frameworks and plane structures
(see Art. 4.4).

[n order to illustrate the use of the above method, let us com-
pute the stresses in the steucture shown in IMig. 14.5e¢ (incidental-

iy these stresses could be obltained directly by the method of sec-
tions).

As usual let us check first whether the system is statically deter-
minale and stable. In the case under consideration 5 = 12, S, =6
and A = 6, wherefrom

i=1246—3x6=0

which shows that at least one of the basic requirements is salistied.
The demonstration that under zero load all the bars remain idle
will be given later.

Replacing bar 7-§ by bar A-2 (Iig. 14.56) we obtain a simple
struclure for which the slress in Lhe subslilute bar may be found
by Lhe methoed of joinis,

Starting with joint 7 we flind the stress produced in bar 7-2 by
the load P; passing to joint 3 we see Lhat under the aclion of this
load Dbar 2-2 remains idle; separating then joiat 2 we shall eagily
obtain Lhe stregs in bar A-2.

This being done let us examine Lhe stress arising in the same bars
from the application of the unit load X.

This stress may be represented by

Ny Not
where ¥ = stress in bar A-2 induced by the load unily applied
at joint /
N’ = stress in the same bar induced by the same load apyplied
al. joint J.



256 Space Framework

Owing to the symmetry of the structure
and accordingly
N.=2N.

As will be readily observed from Fig. 14.5b, the stress N} is oppo-
site in sign to the stress ¥, and P times smaller than the latter.
Henee
2N,
P

ey Ny e ey
Ne= — and Ny=2N = —

Substituting this value in expression (2.5) we obtain

A\'rp _ ."\‘rpp _._]__
N, 2Ny, 2

X=— P

Once X is known, the stresses in all the members of the strue-
ture are found with no difficulty.

Returning to the demonstration that under zere load all bars
of the structure romain idle we can now state that for /> = 0 the
forecec X = 0 and accordingly bar 7-3 is idle. Separating joints I, 3
and £ in succession we shall find immediately that the same applies
to all the other bars,

The method of bar roplacement can be of considerable help when
investigating the geometrical stability of the structure.

Determining the stress &, induced in the substitute bar by a
load unity we may meet with {wo cases:

1. The stress N, = 0. Then X beocomes indeterminate being
cxpressed by % which indicates that the system is instantancously
unstable.

2. The stress N, == 0. Then in the absence of external loads
X = 0, and both terms of the expression

Nyp=Nnp+ XNy

reduce to zero indicating that the system forms an unyielding com-
bination.

(¢} The method of reducing the space struciure to a series of plane
ones. This method becomes applicable when the structure is com-
posed of distinct groups of ceplanar members. ln such cases all
the external loads should be resolved along planes coinciding with
those of the groups of bars just mentioned, whereafter each of these
coplanar groups may be analyzed separately.
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Lel  us  consider, for instance, the system: represented in
Fig. 15.5. The number of support conglraints S, = H % 2 = 10 Lhe
number of bars § = 35 and the number of joints K - 15, giving

§—104-35—3 x 15 =0

Separaling conseculively joints 6, 7, &, 9, 10, 7, 2, 5. 4 and 5
it is easy 1o prove that when P = 0 all the bars remain idle.
Accordingly, the structure is both glatically delerminate and geo-
metrically stable. In order to find the stresses induced by load P

Fig, 15.5

let us resolve this load into three components &, ¥, and A, as in-
dicaled in Fig. 15.5,

[solating thereafter joints 7, &, 2 and & we find that bars 7-8, 2-3
and #-B; remain idle. Similarly, isolating joints 9, 10, 6 and 5
we shall prove that the same applies to bars 9-70, 10-4. 4-5 and
5-Bs. Alone two plane trnsses By-6-7-B; and B,-10-6-B, will Lake
up the entire load. These trusses may be designed in ihe usual way,
component Ny being applied to the first one, component &, to the
second, and componenl N, being divided between the two in any
arbilrary proportion.

5.9, EXAMPLES OF STRESS ANALYSIS TN SPACE FRRAMEWORK

Let us determine the stresses in Lhe members of the central pancl of the canti-
lever structlure represenled in Fig. 16.5 both by the method of sevtion and by
reducing the structure to a series of plane Lousses,

{n) Method of sections. Start by proving that all the web members of the plane
trugs 5-8-2-¢ remain idle. For Lhis purpose isolate joint & lour hars meet at

17853
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this jeint but three (7-9, 2-9 and 10-9) Lie in the same plane, and as no external
loadis applied 1o the joint the siress in bar 5-# must be nil. For the same reasen
hars 5-20, 10-6 6-11, 11-7 and 7-12 will remain idle.

This being known, pass section £ cutting all the members of the panel under
consideration,

Fig. 168.5

Determine stress Uyy by equating to zero the sum of moments of all torces
acting on the feit part ol the truss ahout the r-uxis coinciding with the direction
of bar 6-10

EM o= Upgh =13 3.2=0
wherelrom
{723==0

In order to determine stresses Iy and Dy in diugonals 3-6 and 3-10
project the forces acting in the left part of truss on the z- and z-axes

X =2P4-(Dy— D) cus =0
EZ—Dysin B4 Dasinf=10

whercfrom

From triangle 10-13-3

13
e &(
oS o £ 0.48
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Therefore
-
=t
D=—>_PF
4 12
£ 25
Do T12”

In order to determine stresses Ly sud L of the lower chord elements
6-7 and 10-1f write XM,, =0 about an axis w, !paralle] to ihe w-axis but
pussing throngh the centre of joint &

SMy, =— (L —Lp)3.2=0
giving
Lif _L2

This being known, write TM,=0 about the s-axis passing threugh the

same point
EMy= —8P —3P £ 2.4L;—2.4l5 0

wherefrom

(6) Method of reduction to plane trusses.

Start by reselving the loads along the planes of the two inclined lateral
trnsses. The corresponding components {Fig, 17.5) will ciqual

P b
G T o

Now consider the truss 1-4-712-9 shown in Fig. 18.5 and determine stress
Ui in the upper chord member 2-2. As this same member belongs also to truss

Fig. 175 Fig. 18.5

5-1-4-8 {see Fig. 16.5), another stress I7{ will be induced in it at the same time
Owing to the fact that the vertical projections of loads P, and P, are of
appozite sign

T il
and Lherefore the resulting stess will be nil,
17*
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The stress Ds in the diagonai will be oblained by projecting all the
forces acting on the left part of the Lrnss on a normal to the chovds

Y = —2P - Dycose =10

As P —ti Poand cose—0.3
i

2XAHX5 25
Dy PR
2 B4 12 B

Obvicusly the stress Dy in the corresponding diagonal of the other truss
will equal

25
iz

Finalty cruating to zero ZM about point 3 gives

Di _—'Dz = P

SMa= —6P — 3P, —4lp=0

wherefrom
. D5, 15,
Ly=—r=—gxai’ =% !
and the stress
1P
By o _£,2=§) P

Thus the stresses determined by both methods are in complete agreement.



6. KINEMATIC METHOD
OF INFLUENGE LINE
CONSTRUCTION

1.6. GENERAL

The kinematic method of influence line construciion for any giv-
en function (shear, bending moment, normal Toree, abutment
reaclion, stress in a member of a Lruss) is based on one of the most
general principles of theoretical mechanics—the principle of vir-
tual displacemenis.

in accordance with this principle, the total work performed by any
given system of Jorces along virtual displacements of a body in equilibri-
wm. must be nil. Such dispiacements are reckoned infinilely small

Fig, 10

and therefore they may be accomplished without disturbing any
of the exisling internal or exlernal constraints. At the same time
the insignificance of these displacements permits the introduction
of the following simplifications: when plate F shown in Fig. 1.6
rotates an infinitesimal angle dg aboul point O, any other point 2
located a distance r from poinl @ will shift 1o @, along a circular are:
however, since the angle of rotalion is very small, we may considor
that point @ moves along the tangenl to the arc and not the ave
itsell, neglecting compleicly the distance @@, or the same reason
we may also negleet Lhe difference between dy and tan (deg) which
simplilies very considerably the construction of the virtual dis-
placemenl graphs,
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The kinematic theory (also called the strain energy or clastic
energy theory) enables the construction of influence lines for all
types of structures: beams, arches or trusses, statically determinate
or redundant. The methods based on this theory are parlicularly
well fit for certain complicated cases where they lead to quicker
and more reliable results; they are also very useful [or checking
infuence lines constructed by other methods,

Hercunder we shall describe only one of the methods derived
from the above theory. This method might be termed the instan-
taneous centre of rotation method and is extremely simple and
casy Lo grasp.

2.6. BASIC PRINCIPLES OF THE KINEMATIC METHOD

Let us consider a plate rigidly connected to the ground by means
of three constraints represented by three supporting bars (Fig. 2.6a).

Assume thal it is pequired to construct the influence line for the
stress in one of these bars, say, bar B, when a unit load P, remain-
ing always parallel to itself (Fig. 2.68) travels along the plate.

Unlike the statical methods. which require that a section be
passed across several bars, usually separating the whole structure
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or parl thereof from the ground, the method deseribed involves
the elimination of one bar (or constraint) only and its replacement
by a force X equal to the stress acting therein.

Jn the case under consideration the system so obtained can rotate
freely about poinl A and is maintained in equilibrium by Lhe load
P, the force X and the reactiong acting aleng the remaining sup-
porting hars.

Let us apply lo this system the principle of virtual displacements.
As point A is rigidly connected to the ground it will constitute
the centre of rolation of the plate, the only possible motion of which
will consist in a rotation aboul this peint. Suppese that the plate
hag turned clockwise an infinitesimal angle dg (Fig. 2.60) causing
the load point to shift [rom a to e, and the point of application of
the force X Trom & to b,

Denoting by 8, the component of the displacement a-a, direcled
along the foree P and by 8, the component of the displacement -84
directed along the force X we may write

Py+ X5, =0

which expresses that the work performed by the exlernal forces
acting on a body in equilibrium remaing nil. The load P being
equat to unity, we draw immediately [rom the ahove

5 R, & ) {1.6)

which represents the equation for the required influence line in
its most gencral form.
Analyzing this expression we mnote that from triangle agauy
(Fig. 3.6)
8p,=aa;cosf
where aa;= Aady.
1t follows that
8p=: Aa cosf dy:

Aacosf being equal to the lever arm of the load P about

point A, let us denote it by x which gives
8, =xdg

Ilerveafter any displacement accomplished by seme point of the
plate in the direetion of the load will be reckoned positive and any
displacement accomplished in the opposite direction—negative.

1t is clear that the displacements of different poiuts will depend
on the position of load P, this displacement being proporticnal to
the lever arm x, ot in other words, to the distance of the load poinl
to the centMo of rolation 4.
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laving determined the displacements ol all the possible points
of application of the lpad 2 we may represent these displacements
eraphically obtaining the so-called diagram of virtual displacements
or displacement graph of the system.

Lel us examine the term 8,. Using the same reasoning as above
we obtain from Fig. 4.6

Sy =bbycosy=Abcosydyp=rdg

As both the point of application of the force X and its direction
remain constant, the displacement 8. is a constant independent
irom the pogition of the load £, and may therciore be regarded as
representing the scale to which the virtual displacements have been
drawn.

Indeed, the shape of the influence line will depend solely on
the numerator 8, of the cxpression (1.6) but the determination of

Fig. 8.6 Fig. 4.6

numerical values of the ordinates to this line requires that the
value of the denominator 8, be exaclly known.

Thus, the ordinates to the influence line for any funclion are equal
to thuse of the graph of virtual displacements of the system ade pos-
sible by the elimination of the corresponding constraint divided by
the seale factor G4.

The sequence in which the construction of the inilnence lines
by the method of the instantaneous centre of rotation should be
carried out is ag follows:

(1) eliminate Lthe constraint corresponding to the [unction under
consideration and replace it by the force X,

(2) draw the graph of virtual displacements for the mechanism
obtained upon climination of the said constraint,

(3} determine the scale factor pertaining to this graph,

(4) determine the signs of the ordinates to the influence line.

As an illustration of the above, let us consider the example of
a cantilever beam appearing in Fig. 5.6a for which it is required
to construct the iniluence line for reaction 7,
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The elimination of the right-hand support leaves the beam frec
to pivot about the remaining one (point A), which will thercfore
constitute the centre of rotation of the system. If the beam is turned
connterclockwise through an angle dg about this centre the

X _ o=t
3

{a) r
i | |
i A | 8 |
I 7 '’ . 1
| /—-"1
| :
! .
1 |
| |
! |
M L

{8} t’ :
| |
|
H
|
!
1

{c}

Fig 5.6

displacements of all the points will be represented by a straight
line intersecling the beam axis at A (where the displacement js
nil). The ordinates Lo this line will be reckoned positive to Lhe lelt
of A f{all the poinls being displaced downwards, e.g., along the
direction of force £} and negative to the right of it.

The displacement &, is positive and equal Lo the orxdinale cox-
responding to point B. If in our drawing we put 6, = 1, expression
(1.6) will give

1n order to obtain the influence line for reaction B all that remaing
to be done is to change the sign of all the ordinakes to the displace-
ment graph as shown in Fig. 5.6¢.

In Lhe following articles we shall consider more complicated
cases,
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3.6. REPLACEMENT OF CONSTRAINTS BY CORHESPONDING
FORCES

As already stated, the construction of an iafluence line for any
function starts with the elimination of the corresponding constraint
-which must be replaced by a foree.

A A
psd
"
b
(a2l (6} (a)
Fig. 6.6 Pig 7. 6

Let ug consider in delail some of the more typical cases of con-
slraint elimination.

{(a) K limination of the constraint corresponding to the vertical re-
action. In this case the fixed support should be represented by two
«coneurpent bars one of which is horizontal and the other wvertical

Fig. 8. 6

.as shown in Fig, 6.64. The vertical supporting bar is then eliminat-
ed and replaced by forces X = V, directed towards the hinges as
shown in Fig. 6.65, which corresponds to a positive reaction indue-
ing a compressive stress in the eliminated bar.

(b) Eliminaiion of the consiraint corresponding to a thrust. In this
case the horizontal bar is removed (Fig. 7.6) and replaced by
forces X = M/, again directed towards the hinges, this direction
voinciding with the direction of the thrust reckoned positive.

(¢) Elimination of constrainis corresponding to siresses in truss
members, It is the member for which the influence line is required
that should be rcmoved. The forces X should be directed away from
Lhe joints thus indicating that tensile slresses arve reckoned posi-
Live (Fig. 8&.6).
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(d) Elimination of constrainis corresponding to shearing forces. Any
cross section of a beam, an arch, or a bent capable of resisting Lhe
action of a bending moment, a shearing or a normal force may be
schematically replaced by a comnection consisting ol three bars as
indicated in Fig. 9.65,

The mutual vposition of these bars may be varied at will but
they must always ensure the rigidity of the connection which im-

fa)

plies that these three bars may never have a common point of
interscetion.

In the arrangement appearing in Fig. 9.6& the force acting in the
vertical bar is equal to the shear, which follows from the equili-
briam of vertical components of all forces acling to the lefl (or to
the right) of section I-7

Y =0—X=0
whence
X=0Q

Consequently, the construction of the influence line for the shear
acting over seetion CC reduces to the construction of that for the
stress X in the vertical bar.

Upon removal of the vertical bar the two parts of the beam will
have a wobile connection represented schematically in Fig. 9.6¢.

(e) Eliminaiion of the consiraint corresponding to @ normal force.
Adopting for the conncetion bars a pattern represented in Fig. 10,64
and projecting all the forces acting to the lefl (or to the right) of
section I-F on a horizontal we obtain

2X=N X1
wherelrom
X=N
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In other words, the stress in Lhe hovizontal bar is equal to the
normal force N acling in the member under consideration.

Upon removal of the herizontal bar the two parts of the member
will have a mobile connection represented schematically in
Fig. 10,64,

(0 Eliminalion of the constraint corresponding lo a bending momend.,
The connecting bars may be placed as indicated in Fig., 11.6a.

Fig. 10.6 fig. 11.6

Passing section 7-I and equating to zero M about point K at Lhe
intersection ol the vertical rod with the one coinciding with Lhe
neutral axis of the member we obtain

EMy=M—Xr=20
wherefrom

If r—1. the force X in Lthe connecting rod will be numerically

equal to lthe moment
x=2l_ny

and thug, instead of constructing the influence line for the bending
moment acling over Lhe cross gection we may construct the influence
line for the stress X induced in the lower bar of Fig. 11.6. Upon
elimination of this bar the connection between the Lwo parts of Lhe
member will congist of two bars iatersecting in its neutral axis
which is equivalent to a hinge. Schematically this conneclion is
repregented in Fig, 11.60,

All the above shows that the construclion of influence lines for
the uwsual stress functions may be reduced to the construction of
those for a normal force acling in a bar,
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4.6, CONSTRUCTION OF THE DISPLACEMENT GRAPHS

The virtual digplacement graph delermines complelely the shape
of the influence Yines, their ordinates differing by a censtant factor
only. For this reason it may be said that when the displacement
graph is completed the main bulk of work has been done. Let us
examine the construction of displacement graphs in the case of one,
{wo and four hinge-connceted plates,

(a) Displacement graph for a single plaie. Assume that plale /
with one fNxed poinl O is acted upon by one moving load P .= 1

g:\

Graph

WIS
% &

Pig. 12.6 .

and a fixed force X, the direclion of (he former may be arbitrary.
Let plate / turn an angle dp aboul point O in a clockwise direetion
{on Lhe choice of direction see Art. 6.6).

The x-axis of the graph may be chosen al will excepting paral-
lels to the direction of force P. Thus, in Fig. 12.66 the x-axis is
normal to the line of action of force £ while in Fig. 12.4¢ it has
been chosen horizontal. The axis of ordinates must be always taken
parallel to foree 2. The perlinent points of the system will be denol-
ed on Lhe graphs by the same letters with a prime index.

The digplacement of poinl m along the direction of £ will equal
(gee Art. 2.6)

_ O, =xdy
where  is the distance of the line of action of the force to the centre

of rotation (always measured along a normal to this line, regardless
of the direclion adopted for the z-axis ol Lhe graph).
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The above expression shows clearly that in the case under con-
stderation the displacement graph will form a straight line inter-
secling the z-axis at point ¢ where x reduces Lo zero.

To the right of point O’ the ordinates of the graph are positive,
as the direction of the displacement &, coincides with the direction

fig. 13,8

ol the force P, while to the left of this same point the ordinates
will be negative, for this portion of the plate will move in an oppo-
sile direction,

The scale factor will be obtained remembering that

Se=rdg
It Tollows Lhat for x=7r
63’ T 6;;

In other words, the scale factor is equal to the displacement grapl
ordinate measured a distance r from point ¢ (Fig. 12.66 and ¢).

(b)Y Displacement graph for twe pin-connecled plates. Lot us con-
struct Lhe displacement graph for two plates 7 and I7 fixed at
points Oy and Qg and connected 1o one another by means of hinge 7
located in line with points O; and O, (Fig. 13.6). As we know, such
a system will be instantaneously unstable, hinge 7 being able 1o
sustain inliaitesimal displacements along a normal to line O-Q,,
its motion invoelving infinitely small rotations of plate I aboul
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point ©; and of plate IT about point Q.. Having chosen the z-axis
of the displacoment graph and having found the projections of
04, O, and hinge 7 on this axis we may proceed with the consiraction
of the graph itsell, which will consist of lines 017" and 031" inter-
secting at point 77 (Fig. 13.68).

The scale factor can be found assuming either that the displace-
ment of point 7, common to both plates, is caused by the rotation
of plate { about point Oy, or by the rotation of plate I/ about point
(3,. In the first case the scale factor will be given by the length of
the insert between the line bounding the graph and ithe z-axis,
measured along a parallel to the direction of lorce P a distance
from point Of, and in the second by the length of a similar insert
but measured a distance r, from point O3, Tf measured corroctly,
both scale faclors will be exaclly the same,

Thus far we have admitted that plates / and [T are fixed to the
ground at poinls ¢y and O, which remain immobile, thereby impii-
cating the presence of a third unmoved plate conslitnted by the
ground itself.

[n this respect it is quite important to note that from the view-
point of theoretical mechanics all of Lhese three plates are perfeet-
ly equivalent. Therefore, it is absolutely immaterial which ol the
three will be reckoned immovable and no change whatsoever will
oceur in the outline of the displacement graph when the label
“immobile” is shifted from one plale to another.

Indeed, if it were assumed that plale [/ is the immovable one,
line 7'-03 should bhe adopted as the axis of the displacement grapls
and nothing except the hatching of the graph area would aller as
shown in Vig. 13.6¢.

The importance of the above remark resides in the fact thal in
a number of cases the construction of the virtual displacement graph
may be considerably simplifled by an appropriate choice of that
part of the structure which will be reckoned immovable.

(¢} Displacement graph for a system of four plates. Lel us consider
a system of plates /, I, IIT and IV connected by means of hinges
1,2, 3 and 4 (Fig. 14.6a), such systems being frequently emcounte-
red in practice. If we assume that plate / is the immovable, points 7
and £ will lie on the axis of the graph (points I” and 4" in Fig. 14.65).
Imparting to plate I7 an infinitesimal rotation about point I in
a clockwise direction we shall obtain a displacement graph repre-
sented by the line 77-2°.

In order to complete the displacement graph for plate [/7 the
displacement of only one extra point is required as the displace-
ment of peint 2 is already known (point 2'). It is very convenient
lo adopt as such the instantaneous centre of rotation (otherwise
called the instantaneous centre of zero velocity) of this plate with
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refercuce to plate I, for on the graph this point will necessarily
Lie on the axis of zero displacements, In order to find this centre
let us extend the line 7-2 until ils intersection with the line 3-4
at point @,

[t is casy to prove that poinl O; constilutes the required ceutre
of rotation. Indeed, lictitiously enlarging plate f77 until inclu-
sion ol point Of, and fixing this point we obtain two instantlane-
onsly unstable systems formed: (he hiest, by plates fI and ifF,

By o

Zr‘
Fig 14.6

eacht liaving one lixed poinl (poinls 7 and Oy, respeclively) and
binge-conneeled at point 2, and the seccond by plates 777 and IV
fived at points O; and 4 and hinge-connected at point 3. Bach of
these two systems is in every respeet similar to the system of
Fig. 13.6q.

Ag diving the point Oy does not prevent infinilesimal displace-
ments of plates £/, JIT and {1V wilh respect Lo plate 7/ reckoned
immovable, it is clear that this poinl js in effect the instantancous
centre of rotation of plate JI7. It follows Lhat the projeclion of
point Oy on the axis of the graph will provide the exira poinl re-
quired and therefore line 2°-0°-3 will constilute the displacement
graph for the plate 717, Repeating the same reasoning for plate /V
lwe shall find that line 4'-3°-0" forms the displacement graph for the
alter,
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Thus the broken line 7°-2"-8"-4" constitutes the enlire displacement
graph of the system formed by four hinge-connected plates.

1{, Tor instance, plate [V were regarded as the reference one, line
3’4" would constitule Lhe axis of the graph from which all the
displacements should be measured. The instantaneons centre of
rolation of plate £f would be located at point O, formed by the
inlerseclion of lines 7-4 and 2-3. On the displacement graph the
corresponding point should lie on the axis of the graph (line 3'-47),
its displacement being nil. Points 7', 27 and O must also lie on
one and the same straight line, for all the three belong to plate /1.

5.6, DETERMINATION OF THE SCALE FACTOR

As already known (Art. 2.68), the displacement in the direclion
ol the [oree X equals

S =rdgp

whereas the displacement of any point of the plate along the
direclion pavallel 1o the load P amounts to

dp=uadyp
It follows that for a=r

Thus, the scale factor may be oblained by measuring the ordinate
{u the displacement graph wl a disiance r from the projection of the
cenlre of rotation, where 1 is the lever arm of the foree X about this
centre. (n Lhe graph distance r must be always measured along
a normal to the direction of the mobile load, regardless of the angle
formed by the axis of the graph and the direction of the load {see
Ilig. 12.6¢).

Examples of scale factor determinalion, when the system con-
sists of one or Lwo plates, were given in Arl. 4.6.

There are several ways of obtaining the value of the scale faclor
when Lhree or more plates are invoelved. It is obvious that regardless
of the procedure adopled we must always obtain the same resulls,
but nevertheless lor the sake of clarity we shall denote by 6§,
8op, vle,, the values of the scale factors determined in different
ways.

Assume that in FFig. 15.6a plate 7 is lixed in which case line 77-4"
in Iig. 15.66 will constitute the axis of the graph. The displace-
menl 8, will be condilioned solely by the motion of hinge 2, point
g belonging lo plate J which is regarded as immovable.

Assume that the entire force X is applied to plate 7 in which
case lhe corresponding lever arm will equal r;. The scale factor
I8--853
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81, will then be equal to erdinale loline I’-2 measured a distance ry
either to the left or to the right of point 7°.

If, on the other hand, the force X were applied to plate 77, the
lever arm ry should be measured from point Oy and the seale factor

I

(e) ————3,
P-4

I I Ls i
T—10u=04 + 85

Fig. 15.6

82, would be given by the ordinate to the line 2-2° measured a
distance r; from point 03.

Let us determine the scale factor 8, assuming thal plate 7V is
rendered immovable. In this case both points 2 and 5 will acquire
a certain displacement and therefore the required scale factor will
be represented by the algebraic sum

63x:ééx+6§x
where 83, is the displacement of point 2 and 83, that of point 5.
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In order to determine 83, let force X act solely on plate 711, Ia thai,
case the lever arm equals ry; and the insert between the axis
of the graph (linc 3'-4" in this case) and the line corresponding to
the displacement of plate III (line 2°-53") measured a distance r;
from point & will represent 8%,. [t must be reckoned positive, lor
point 2 moves along the direction of the force X. Asfor 8y, its value
will be found by applying force X to plate [, the lever arm in
that case equalling ry.

The insert between the graph axis and line I’-4" (represenling
the displacement of plate [ with reference to plate V) measured
a distance r, from point 4" will yield the value requirved. This displace-
ment is negative and therefore the value of 83, will be found by
subtracting the length of 8%, from that of 8.,. A comparison of the
three scale factors obtained appears in Fig. 15.6c. If all the opera-
tions were carried out correctly all the scale factors oblained will
be in strict coineidence.

6.6. THE SIGN CONVENTION

The correct determination of signs will be greatly simplified
if the rotations of the plates were such as lo ensure in every case
a positive displacement along the line of action of the force X,
for in this case the scale factor 8, will be always positive.

This will be [ulfilled if the motion imparted to the plates coin-
cides with the dircction of X, All the ordinates to the influence
line in that case will be opposite in sign as compared with the ordi-
nales to the displacement graph, since X is equal in amount and

opposite in siga to g% [see expression (1.6)].

X

It the load P is directed downwards {(in which case positive dis-
placements §,, are laid ofl below the graph axis and the negalive
ones above the axis), those of the ordinates to the influence line
which are above the x-axis will be positive, and those below the
same axis negative. Vice versa, when the load is directed upwards,
positive influence line ordinates will be helow the z-axis and nega-
tive ones above it.

7.6. EXAMLPES OF INFLUENCE LINE CONSTRUCTION

Problem 1. Required the infleence line for reaction at B of a poultispan sta-
tically determinate heam shown in Fig. 16.6a.

Selution. Eliminate 1he constraint at the supdport B and replace it by a force
X. Impart an upward molion lo peint 7 ceinciding in direction and sign with
force X and construct the displacement graph for plate I which will be represent-
ed by the line 0’~-71'-2" of Fig. 16.65. Line 2’-3'-4' will correspond to the dis-
placements of plate IT and line £°-57-6* to those of plate /7. The lever arm of X

18+
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about point O is equal Lo {, The value of scale factor 8, will be given by the ordi-
nate to the displacement graph at point 7. If the Iatter is adopted for unity the
influence line will merge with the displacement graph.

P
(a) 3 I 4 Vi 5 Y
A A n
R A 7 -
| . 51 a51 {250
o Influernce Line for
fo! ] reaction 8 Py
gf t Jf . 5’ l "}3.
TR
T
;
4*

Fig 16.6

The ordinates at points 2, 4 and § will be found {rom the similitude of tri-
angles
: 3 3
B=tgi W= —5 =+5
Positive ordinates are above the z-uxis, negative ones below. The same influ-
ence line was oblained previously using staties {see Fig. 57.2¢).

Troblem 2. Required the influence ling for the shear in cross section m-n
of the beam represented in Fig, 17.64.

Solution. Introduce a movable connection as shown in Fig. 17.65 belween the
two parts of the beam separated by section m-z and two forces X = §,., replac-
ing the vertical constraint at this cross section. Seleet a graph axis, say, line
2’-71° and mark on it all tho fixed points of the heam (points 7,3, 9 and 71).

Tmpart a clockwise rotation tocf)late £ about peint A4 and a similar rotation Lo
plate 77 about point B. The two displacements will he representod in the graph
by the lines 2°-3"-m' and n'-8'-¥0', respectively, these two lines being parallel
as both parts of the beam ave rotated through the same infinitesimal angle dg.
Mark peints 57 and 87 on the corresponding tines of the graph, '

Line 7°-2" will eonstitute the graph for plate J{1, line 5'-6 lor plate IV
and lwe 10°-777 that for plate V, the whole graph consisting of the broken line
1r-2'-5"-'-10"-11",

in order to detormine the scale laglor assume that plate 7 is fixed. Then
&, will be ogual to m’'n’ which will be regarded as unity

Oy=m'n =1

It is readily scen that &, iz the sum of 8% and 8%. The same influence line had
been obtained previously using siatics (see Fig. D5.2¢1.
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Problem 3. Required the influence line for the stress U,y of a deck-bridge
truss of Fig. 18.0a.

(o) ,r Z 8 A A
S T | T T
7 - A 7%
B o //
‘I—‘ .
) 2’ B i,
(C IJ' -TTTT L Ewwﬂ?"”'
7

Solution. Replace upper chord member -6 by the siress X = Uy It should

e noted that the elimination of har 4-6 does not entail that of the corresponding
stringer.

: lp 2 Stringers
7 2 4 & A a1z
2 T F I x=u; I 1 I 1
T o +
L n
= Ja g=4 |2 i 7 g 1
= 5
7 Influence line for Uy 190
& ' ' 'f T
I
Yy Py
d=17 -
/ Tt

Fig. 18.6

The force X will cause a clockwise rotation of plate I and counterclockwise
ong of plate I7. The corresponding displacement graphs will be represented by
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lines 7°-5* and 5°-72' (Fig. 18.68). Projocting on these lines points £° and 6*
we obtain the displucement of joints £ und & ol the upper chord.

The scale factor is found assuming that plate I is rendered immobile, plate £/
retating about point 5. The lever arm » of stress X about this point equals
A= 4 m and, accordingly, the scale factor will be given by the insert between
fines 7'-5" and 5'-12” measured vortically a distance of 4m from peint 57 (assum-
ing plate, f fixed, line 1’-5° becomes the graph axis). Knowing the value of
this insert and reckoning it equal to unity, it is easy to determine the influence
line ardinate y, at the abutment 4, Indeed, from the similitude of iriangles,
yo == 3. The same influence line had been obtained previously (see Iig. 71.4).

Problem 4. Required the influence line for the stress in diagonal 5-6 of a
threugh bridge truss shows in Fig. 19.6.

Selutivn, Eliminate the dia}fonal anber consideration and repluce it by two
lorcos X =Dy, The system will be thus transformed fnto two plates 7 and 7/

AN
)
f“@.
o
a
{a <
bid ===
a=18 {4
72
r=2
K'
‘\\
(b
V= 8874 ~—_ |
H“"“x‘

..,_-_‘“M 1
lI1‘." (

Fig. 18.6

(hatched on the drawing) conneeted to one another by two bars 5-7 and 4-6 the
directions of which intersect at poini XK.

Let plate IT he fixed. Its displacements heing in that case nil, the correspond-
ing displacement graph 6°-727 will merge with the z-axis (Fig. 19.64) and the
instantaneous centre of rotution of plate 7 will be at point K. The force X
will impart a clockwise rotalion to plate f about thiscentre, ling K '~4' represent-
ing its displacement graph whilo the lines 4-6° and 5’7" will represent that of
bars 4-6 and 5-7.
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Actually it is nol the plate f7 but the ground, i.o., points 7 and 12, that should
.h1e l'eg:u'(}cd as fixed. Therefore trace line 1’-12’' and adopt it as the linal axis of
the graph,

The cntire displacement graph will then be represented by the broken line
1'-4'-6"-12', tho sign convention stipulated in the previous section remaining
in force.

Thereaftor proceed with the determination of the seale factor. Assuming that
plate 77 is immobile and that force X acts on plate [, the lever arm r of this
force aboul point & will equal 20.6 metres (zee Problem 2 in Art. 7.4). The insert
hetwoen the graph axis 6°-72' and the line representing the displacement of
plate £ (line 7’-4") measured at a distance of 20.6 m from point K’ will provide
tho value of 3, = 1.

Using thie similitlude of triangles obtain ordinate ¥, under the left-hand
abutinent
20,

18

fea ]

.
#1
whereirom
18
T m—— T4
NM=5¢ 0.874

The infiuence Line thus obtained ecoineides fully with that of Fig. 9.4 con-
stracted using statics,

Problem 5. Ttequired the influence ling for the bending moment ueling ovor
cross seetion K of a parabolic three-hinged spandrel arch of Fig. 20.6a.

/

{al ;’

p 15

17

= b
(&}
£ ;
4 Influence Ling for M,
i o el | | 17"
\]3, = 57 77 8
Fig. 20.6

Solution. Introduce an extra hinge at cross section K which leads to the
formation of four plates I, 7T, 11T and I'V connected together by means of four
hinges 9, K, 13 and 17.
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Construct tho displacement graph ol this system of plates using the instanta-
neouis centre of rolation of plate J£F with reference to plate / (point m) which will
be represented by the broken line 9°-K'-£3°-17" (Fig. 20.68).

Points I° and 8 are plotled on the graph axis. Poinls 27 and 4 are then
murked on Lhe displacement graph for Plate 7/, point 4° on that for plate 711,
aud points 57, 6’ and 7 on that for plate / V. Connecting all these points togoether
the digplacement graph of all the panel points of the deck will he oblaiued.

_ In urder to determine the scale factor fix plate FT and let force X act on
piate 717 causing it to rotate with reference to plate 77 about lhe hinge K.
The lever arm of foree X may he taken equal Lo 4 metre.

Tho scale fuctor 6, will be given by the length of the segmoent between Lhe
graph axis 8'-K’ and the line representing the displacement of plale 717 (line
K'-13") measured one metre away from point K’.

Euowing the value of this segment the ordinate to the influence line for
the bending moment at the abulment hinge ¢ will be found frum

Y

=
&
=

I
I
I

;‘I-.i

o

wherelrom
yo=0uzn="1z =7

All the other ordinates to the influence line will be readily found thereafler.



7. RETAINING WALLS AND EARTH
PRESSURE COMPUTATION

1.7. GENERAL

Relaining walls are structures intended to prevent the sliding dowr
of slopes too steep to remain standing on their own. Fig. 1.7 shows
(wo different types of relaining walls and a sheet pile-wall which
in numerous cases may serve the same purpose.

The retaining wall shown in Fig. 1.7 i3 a massive construclion,
ils main dimensgions & and A being of the game order. Walls of Lhis

ﬂf@fﬂ
ey
7
i

n

¢ ”mgw

fal

type are usually buill of rubble or mass concrete. They are subjected
to their dead weight Q, the active and passive pressure of the carth
E, and E, developed over the rear and front faces AB and CD and
the reacltion CB acling over the foundation. Retaining walls of
much lighler construction shown in Fig. 1.7b are usually buill of
reinforced concrele and consist of a foundalion slab €I and a ver-
tical wall 4B. The forces acting on a wall of this Lype consist of
the dead weight @y, @5, .. ., etc., of the weight G of the column
of earth resting on the foundation slab, the active and passive
pressure of the earth £,, E., ..., and the reactive forces dislri-
buted over the lower surface of the foundation slab. The reduced
weight of these walls renders it possible to make use of prefabrica-
tion techniques.
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Sheet pile-walls are built up of separate wooden, reinforced con-
crete, or steel sheet piles which are sunk inlo the ground side by
side using special equipment. The dead weight of sheet piles and
the vertical reaction applied to their points are so small thal they
are always neglected. Accordingly, the only forces that must be
cousidered are the active and the passive pressures of the earth
Ey, E., Ei ..., etc., which must balance each other.

In all computations pertaining lo retaining walls the deplh of
Lhe structure in the direction normal to the surface of the drawing
will be always taken equal to one metre. The design of retaining
walls and of sheet piling must be always preceded by the determi-
nalion of the loads and forces acling on these structures including
the earth pressure £. Without committing any serious error, both
the aclive and the passive earth pressures may be computed on the
assumption that the earth constitutes a granular malerial.

2.7. PUYSICAL PROPERTIES OF GRANULAR MATERIALS

Granular materials consist of very small solid rounded particles
and therelore the only internal stresses that can develop in such
materials are friclion and compression. Dry sand and grains of cerc-
als in large quantities constitute granular materials which are as
close as possible to the definition given ahove. In the actual design
of retaining walls cohesive soils are frequently met with but the
forces of cohesion are usually neglected and the soil is regarded as
a granular mass.

In order to determine the pressure exerled by a granular mate-
vial on a retaining wall the following physical properties of this
material must he known:

1. Iis weight per cubic metre y usually given in tons, This weight
varies from 1.6 tons per cubic metre for dry sand to 2.0 tons per
cubic metre for water saturaled materials.

2. Its porosily m given in per cent and representing the ratio of
all the intergranular voids to the total volume of the material. For
compacted sand n & 30 per cent, for loose sand it is close to 50 per
wenl and for dry clay it may vary from 25 to 40 per cent.

3. The weight of the material suspended in water y, also given
in {ons per cubic metre. As one cubic metre of the material con-
tains n per cent of voids, the loss in weight due to its immersion will
be equal to the weight of the water displaced or, in other words, to

(t—120) vo

where vy, i8 the density of the water.
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Consequently
0
Yo="u (1”“@“5) (1.7)

4. The anple of repose § which is the steepest angle 1o the hori-
zontal at which a heap of this material will stand on its own
(Fig. 2.7). This angle is characteristic of the friction devcloped

R

¢ 5 Pl
(a) fb)
Fig. 2.7

between the particles at ihe surface of the granular material {all
forces of cohesion being neglected).

The magnitude of the angle of ropose @ depends greatly on the
degree of humidity of the material. Thus

for dry sand g = 30-35°
for humid =and ¢ = 40°
[or wet sand ¢ = 25°
for dry clay ¢ = 40-45°
for wet clay ¢ = 20-25°

5. The angle of internal friction p characlerizing Lhe Iriclion
between the inner particles of a large volume of the material. The
magnilude of this angle can be determined experimentally using
a device schematically represented in Fig. 2.7h. This device con-
sists of a mctal cylinder separated horizontally in two parts ({ and
2), a plunger die 3 and a dial indicator 4. The lower part of Lhe
eylinder (part 7) is fixed whilst the upper one (parl 2} can move
horizontally under the action of a force I. The specimen of the
granular material § contained in the cylinder is subjected to a
constant verlical pressure N, transmitied through the plunger dic
4, and to a gradually increasing shearing force I'. The magnitude
of this force is registered at the precise moment when the state of
limit equilibrium is reached, in other words, at the moment when
the first sign of sliding ol the upper part of the cylinder along the
plane a-b is detected by the dial indicator 4.

At this moment the compressive stress o acling across seclion

a-b is equal to% while the shearing stress © equals IT' F being
the area of the cross seclion a-b.
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When the state of limit equilibrium is reached, the resulting
siress p is deviated from the normal to the plane along which the
sliding occurs by an angle equal to the angle of internal friction
given by

-
tan p==—
G

wherelrom
T=0otanp

The U.S.5.R. Building Codes usually stipulate the following
values for the angle of the internal friction:

for fine sand p = 20-30°
for mediom sand p = 30-40°

for course sand, gravel
and rounded pebbies p = 40-10"
for sandy loam p = 13- 3(]
for ordinary loam o = 10-30°

The value of the angle of internal friction in sandy soils may
he considered approximately equal to ils angle of repose g, i.e,
Do

G. The angle of friction between the material and the face of the
wall 8§, which depends mainly on the condition of the surface along
which the contact occurs. When the surface is very smooth 6 almost
equals 0, and for very course surfaces § may approach the angle
of internal friction p. In actual design work § is frequently taken
equal lo zero. Otherwise it may be expressed as a fraction of the
angle of internal friction

1 3
82 5 pup toxp

7. The cohesion € which is usually expressed in kg per sq cm
or in tons per sq m. In dry granular materials, such as sand or
grain, € is practically nil. [n other usual seils the cohesion will
amount only to a fraction of a ton per square metre and therefore
it may be salely neglected. A device similar Lo the one described
above can be used for the determination of the eohesion C which
is related Lo the normal and shearing stresses hy Coulomhb's for-
mula

t=C-+atanp

3.7. ACTIVE PRESSURE OF GRANULAR MATERTALS

The active pressure of a granular material is the force which it
will develop on some surface when the latter moves over a very
small distance away.
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4

As the surface A8 of Fig. 3.7a shilts Lo a new posilion 4B, a
parl of the granular material contained in the wedge ABC starts
moving downwards. The surface which separates the moving parl
from the one remaining immovable is called the cleavege or slip
plane (surlace} and its projection on the plane of the drawing—
the cleavage or stip line. The paths of the particles contained in
ihe wedge ABC are very intricate and depend both on the chara-
cter and the magnilude of the displacement of the surface AB. The

Fig, 3.7

directions of the pressures £ and 11 exerted by the granular mate-
rial cannot be determined with certainly, for the state of limit
equilibrium will never be reached simultaneously at all points
along the surfaces concerned and therefore the siress will not be
deviated everywhcre from the normal by an angle equal to the
angle of friction,

The correet deterinination of the pressure developed by the earth
against some surface is therefore extremely complicated and has
as yet not found a comprehensive solution. The gimplified wedge
theory given by Coulomb (1736-1806) is based on the following
assumplions:

1. The curved cleavage surface is replaced by a plane whereby
its projection on the plane of the drawing becomes a straight
line BC.

2. The granular materials contained within the wedge are con-
sidered solid.

3. The wedge itself is in a state of upstable equilibrium, i.c.,
in a stale preceding immediately its sliding down. The latter assump-

Lion permits 1o dctermine the directions of Lhe resultant pres-
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sures E and R. When the surface AB moves away, the wedge ABC
starts sliding down and the forces of friction which develop along
the surfaces 4B and BC within the malerial will be also directed
downwards. If the limit equilibrium is reached simultaneously at
every point along tho surface 4B the resultant stress will be deviat-
od everywhere from the normal to this surface by an angle equal
to the angle of friction 8 and therefore the resultant pressure will
also make an angle § with the normal U/. Similarly the pressure it
will be deviated from the normal V by an angle equal to the angle
of internal friction p.

Lot us determine the pressure E, developed against the surface
AB (Fig. 3.7b) when an arbitrary surcharge is applied to the sur-
face of the earth.

Assume that G == dead weight of the wedge ABC (G = area

ABCy)
(@ = resultant of the surcharge acting on the wedge
G, = resultant of the forces & and @; G, = G-0.

Knowing Lhe magnitude of G, and the directions of the pressures
E, and R wo may construct Lhe triangle of forces abe.

the angles of this triangle are

Labe=0—p; Lcab=90"—e—8=1
/ ach=180°— (0 —p -}
From this triangle we obiain
£q Gy

sin {(-——p)  sin [180°— (4 —p-- )|

wherefrom

sin {3 —p) -
Ey=Cosimro—n 2.9

This expression cannot be used as yet for the determination of
the active pressure £, for it contains the angled made by the cleav-
age plane with the horizontal which remains unknown as well
as the dead weight of the wedge G and the magnitude of the sur-
charge Q, both depending on the angle just mentioned.

When the angle & made by the cleavage plane with the horizon-
tal varies it entails a corresponding variation in the value of the
pressure F,, this variation, if represented graphically, having
the shape of a curve shown in Fig. 3.7c. When & ==p, sin ( — p) =
=0 and E,=0; for &= 90° L+ ¢ the cleavage plane BC will
coineide with the back of the wall AB and both £, and the result-
ant G, will also reduce to zero.

It iz obvions that the maximum value of the aclive pressuro
E, will correspond to some intermediate value of & =,.
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When designing a retaining wall this maximum value of the
active pressurc should be laken into congideration, for if the strength
and stability of the wall are insured under these most adverse con-
ditions, the wall will remain standing for any other direction of the
cleavage plane. The value of the angle O, corresponding to the maxi-
mum of B, may be determined from the equation

dii,

?1’5"_0
The sign of the sccond derivative shows that the pressure thus ob-
tained by Coulomb’s wedge theory is indeed the maximum one. In
actual praclice the maximum active pressure developed by 1ihe
earth against the back of a retaining wall may be somewhat small-
er than E, .., determined as above. However, in certain cases when
the displacement of the wall becomes extremely small (for instance,
when the wall is founded on solid rock) the pressure it will sustain
may exceed substantially the maximum pressure computed on the
hasis of the aforesaid theory.

When the surface of the earth is of irregular shape, the equation
aE,
F5a
is plane, direct compuiation becomes possible.

= 0 may be solved only by graphical methods. Tf Lhe surface

4.7. GRAPHICAL DETERMINATION OF MAXIMUM ACTIVE
PRESSURE

Let us determine the direction of the cleavage plane corresponding
to the maximum pressure developed against the back of a retaining
wall AB when the surface of the earth is irregular in shape but
no surcharge is applied thereto. Adopting an oblique system of
coordinates ITBD we shall first construct the graph of the variation
of the active pressure &, in terms of the direction of the cleavage
plane (Fig. 4.7). For this purpose let us measure to some scale the
dead weight of the wedges along the axis BD and the pressures
E, along the axis BH. It may be shown that the Jength of the line
K.F, will represent the amount of the pressure corresponding lo
the direction of cleavage line BC,. Indeed, the weight G, of the
corresponding ABC, will equal

: G,=1v < (area of triangle ABC,)
Assume that BF, represents to scale this weight. The line F, X,
parallel to the axis of coordinates BH will meet the line BC), at
point K.
The angles of the triangle BF, K, are equal to
L KpBFg=10,—p
LK F B == (00"—g8) Ltp—(p{-8)=00° gl =1
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Let us now construct the trianglo of forces abe in which the ray
ab =G, = BF, and the ray ac = E,. Comparing the triangles
abe and F,BK, we remark immedialely that they are identical
and therefore

En=K,F,

Thus, in order to determine the pressure devcloped by a granu-
lar material against the face AR for any given direction of the cleav-
age plane BC, we must lay off along the axis BD the dead weight
ol the wedge ABC, {represenled by the length B#,} and Lhen frace
through the point #, a line parallel vo the olher axis BH until its

Scalefor & and &

Fig 4. 7

intersection with the corresponding cleavage line BC, at point K.
The length of the line K,F, measured to scale will represent Lhe
magnitude of the pressure K.

If we repeat the construction just described for a number of coun-
veniently chosen direclions of the cleavage planes B¢, B, ele.,
we shall find a series of points K., Kz, ele. Connecling these points
by a smooth curve we shall obtain the required graph showing Lhe
variation of £, in terms of Lthe angle 1 exactly in the same way ag
the graph schematically represented in Fig. 3.7¢. In order to lind
the maximum of £, we may now trace a gangenl Lo the curve paral-
Jel to the axis BD and through the poink of tangency K we must
trace the line KF parallel to (he olher coordinate axis BH. The
length of this line (always measured to scale) will give us the maxi-
mum value of the active pressure E which will be developed
against the back of the wall 4B while the line 8KC will indicate the
inclinavion of Lhe cleavage plane.

The praphical method deseribed above remaing wvalid when
a surcharge ig applied to the surface of the earth. In (hat case the
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dead weight of cach wedge should be increased by the amount of
the load which it carries.

Problem. Determine graphically the maximum active pressure developed by
a granular material against the surface 48 (Fig. 5.7), provided p = 40°, 8 = 5°
and y = 1.6 tons per cubic metre.

Salution.

1. Start with tracing the coordinate axes BD and BH.

2. Adopt a number of cloavage plane directions given by BC,, BC,, cte,
For this purpose divide the line ALy into five segments each one metre long and

selecl points Cg. €y, . . ., Cyp equally at one metre intervals.
Is G C & (g G Ty o
o G y i b
E > Z s
5 %
o 0 K, 7
A L
: T £7
% F
fg
S & K fs
o 3
T “’" £y
= G 0 5 1w 15 20 2%t
forB-45 J e e ]
H> ] Fa N\ gogge  Scale for Gond £
p_
i\
eom |8 F
Filg. 3.7

al Compute the dead weight of the wedges. For the wedge 4 B¢, this weight
equals

Gi———-,}X 5.35%1x1.6=4.28 tons
The weights of the other wedges abutting to the line 45 will be exactly the
sam’f‘ile weight of the wedge CsBC and of all the other wedges abutting to the
hevizental €5C,, will be equal to
Go—fI =X T-8X 1 X 1.6=6.24 tons

4, Set out to scale along the axis BD the dead weights of the wedges

Gy, Gy, ..., Gy which are as follows
hFi=0G,=4.28 tons BFg==0Gg=27.64 tons
BFp==G5=8.56 tons DBFy=G;=233.88 tong
BF3=03;=12.84 tons  DBFg=Gg=40.12 tons
BF,=G,=17.12 tons  BFg=Gy=46.36 tons
BFg=Gs=21.40 tons BFy=(1,="52.60 tons

19—8523
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5, Through the points Fy, Fo, ..., Fyo trace the lines Fi Ky, FaK,, . ..
. o Fig Ko parallel to the axis 51, _
6. Connect the points £, K, ..., Ky by a smooth enrve lhus oblaining

}he grag,h showing the variation of the pressure F developed against the sur-
ace A5,

7. Trace ithe line I'T tangent to the graph and parallel to the axis B7).

8. Connect the point of tangency K and the foof of the wall B by a straight
line BKC which will constitute the cleavage line.

9, Through the same point of tangency trace a line KF parallel to the axis
B H and measure to scale tﬁe length of this line which will represent the maximnm
active pressure developed against the surface 4B

E=KF=13 tons

5.7. PONCELET'S METHOD

In all cases when the surface of the granular malerial and the
surface AB are plane, the determinalion of the maximum aclive
pressure may be carried out by a graphical methed devised by
Poncelet.

Without entering into the theoretical demonstraiion of fthis
method (based equally on Coulomb’s wedge theory) we shall describe
hereunder the procedure $o be [ollowed when a uniformly distrib-
uteb surcharge ¢ acts on the surface of the earth.

Start with replacing this surcharge by an equivalent layer of
earth, the thickness of which is givea by

a

Rogie= -
This being done, the position of the cleavage plane corresponding
to the maximum of the active pressure £, is determined as follows.

The line AB is continned until its intersection at point A, with
the upper surface of the equivalent layer (Fig. 6.7). Therealter:

(1) through the point B trace a line BL, making an angle p with
the horizontal and meeting the upper surface of the equivalent
layer al Ly;

(2) through the point Ay trace the line A;M making an angle
(p+6) with the surface AB until its intersection with Lhe line
BL, at point M;

(3} using the line BL; as a diameter, frace a semicirele;

(4) at point M erect a perpendicular to the line £L; unlil its
intersection at point ¥ with the semicircle just mentioned,

(5) from point B swing an arc with a radius equal to BNV cutting
the line B L, at point O (BN = BO);

{6) from point O traco line OC, parallel to AW un til iig inter-
section at point €y with 4Ly;

(T) the line BC; connecting the foot of the wall with point C,
constitutes the projection on the paper of the cleavage plane,
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This being done, proceed with the determination of the magni-
tude of the pressure E; devcloped against the surface 4B;

(&) from point & trace an arc using OC; as radius until its inler-
section wilh line BL; at point P;

Ly

&y

Fig 6.7

(9) connect points €y and / by a straight line thus oblaining the
triangle OC,P;

(10) through point € draw the line CRS parallel to BL,.

The area of the trapezoid PRSO multiplied by 1 and by the den-
sity of the granular material y will give the magnitude of E, .. de-
veloped against the surface AB.

It the surcharge ¢ were nil, it would suffice to ltake ky, = 0 in
which case the line 4,C,L, of Fig. 6.7 would coincide with the
line ACL and the point €y would coincide with the point (', The
direction of the cleavage plane will remain unchanged, as for the
magnitude of the maximum pressure it will be given by the area
of triangle POC (see Fig. 7.7) multiplied by 1 and by y

E =17 X (area of triangle POC)

Problem. Roguired to determine graphically the active pressure developed
against the back of the wall AB (Fig. 7.7), provided A = 5 metres, p = 40°
§ = 5°

= 4% &= 20° a = 10° 9 = 1.6 tons per cubic motre.
19*
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Solutivn. 1. Determine as just explained the position of the points 4, M,

N, O, C, P,
2. Determine the position of the cleavage plane BC.

3. Measure to scale the base and the height of the triangle POC equal, respec-
tively, to 3.4 metres and 3.08 metres.

fr=8m

Fig. 7.7

4. Compute the area of the triangle POC

}"=Ai3_4 ¥ 3.08=5.24 square melres

5. Determine the magnitude of the active pressure required
E=1.6x%5.24=5.38 tons

6.7. METHOD OF DIRECT COMPUTATION OF THE EARTH
PRESSURE

In order to compute directly the earth pressure we must first
rednee Conlomb’s formula (2.7) to the following form

Eq=Cf (#)
where € is a certain factor independent of 9. Thereafter using the
('xpremiou%%'l providing for the maximum of E, determine the

position of the cleavage plane (angle 9,). Having found this angle,
substitute its value in the expression of Z, thus obtaining the maxi-

mum pressure reguired

E,= CF (D)
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Due to purely mathematical difficulties, this method may be
applied only in some particular cases.

Let us Lake up the most simple case when itis required to find
the pressure exerted against a smooth vertical surface AB shown in
Fig. 8.7 (6 = 0 and ¢ = 0), when the surface of the granular mass
is horizontal and loaded with a uniformly distributed surcharge ¢
tons per square metre.

Lot B¢ reprcsent the direction of some cleavage plane. In that
case Lhe dead weight of the wedge ABC will be given by G =

Ag
q
'Qb 0
A 7 -
P
-
D)
B
Fig 8.7

= 0.5-AB-AC:1-y and Llhe resultant of the surcharge acting on
this wedge by Q = AC-1.q. The resultant of @ and @ will be

Gy=C+Q =5 AB-AC-y+ ACg =5 AC-y (4B + 24)

Substituting in this expression 2 for AB, by k cot® for AC and
Ity for% (where Ry is the thickness of the equivalent laver) we
obtain
Gg =5 P (R 2ho) cot O

Reverting to the expression (2.7)and replacing % = 90°—g--8 by
40°, the fractional part of this expression becomes equal to

sin (G —p) =ain(1‘.’r—p)

sin (§+p—p)  cos(B—p)

After the above transformations, the expression (2.7) becomes

Eq =5 vh (h+ 2hq) cot §-tan (8 —p)=C- ()

= tan (—p)

where
G %?k (h+ 2hg); f (D)= cotd-tan (§—p)
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The angle of the cleavage plane and the horizontal will be deter-
mined using the equation

ak
T =0 ot 75 CF (B =

—C[ H}tan (— P)"‘G(‘tﬂ“‘"‘qﬁ—m] =0
~ Reducing both terms in hrackets to the same denominator and
dividing the egualion by

C
sin? ¢ cos? (¢ —p)
we obtain
sin & cos & = sin (& —p) cos (¥ —p)
or
gin 20 = sin 2 (¢ —p)
The roots of this equation are

B =n90° 4 (—1)" (B p)

where n =0, 1, 2, 3, ...

1f n =0, we obtain 4 =¥ — p leading to p = 0. This solution
is incompatible with the physical properties of the granular mate-
rials for which we always have p == (.

When n =1, we obtain ¥ = 90° — (4 — p) leading to ¥, =
Y (T L
= 45° - 5

For valnes of n greater than one we obtain again a series of solu-
tions incompatible with the terms of the problem. Therefore, the
only root of the equation to be retained corresponds to n =1 in

which cise the angle formed by the cleavage plane with the horizon
equals

Vo =45+ (3.7)

Substituting this value of &; in the expression of the pressure
we_obtain

Eq=(-f(8) =C cot (1) tan (,—p) = C cot (45°+ ) x
o P
X tan (45 - ﬁ)
IReplacing in this expression cot ({s5°+~§—) by tan (45°—%) and
substiluting its value for C we finally obtain

B =iy L vk (4 2h) tan? (45%---) (4.7}



8.7. Method of Direct Computation of the Earth Pressure 295

If the surface A8 had a batter (e 5= 0) and were rough (§ = 0)
and the surface of the carth sloped towards the wall (Fig. 9.7),
the magnitude of the active pressure would be given by the follow-
ing lormula

Eq=-y vh (4 20K ) K (5.7)
where
fo= %
- COS € COS o
Ke= o8 (8 —o)
__ sin(p—a) =
Ky= c0s (B—a) (6.7)
| /sin (p—0) cos (e —at)
Ko= ¥V o (e 0)sin (p—a)
. cos (p—g) 2 i
K= [(1+K0K1} cos s] cos (g +90) )
The position of the cleavage plane wouldibe determined by
Xg= K(p‘ll (?.7)
where hy = . {see Fig. 9.7).

cns g
The determination of the point of application of the active pres-
sure requires that the distribution of the unit pressures along the
surface of the wall be known.
In order to obtain this distri-
bution let us first consider the
variation of the aclive pressure £,
in terms of the depth y (Fig. 10.7a).
For this purpose we may use
expression (5.7) replacing in the
latter & by the ordinate y, thus
obtaining

qu=%?y(y+2hqu)K

This expression permits us to
construct the graph just mentioned
(shown in Fig. 10.7%) which
represents the increase of the
pressure £,, with the increase Fig. 8.7
of the depth of the foot of the
wall. 1t is easily seen that this graph is a conic parabola.

When the depth y is increased by dy the active pressure Eg, is
increased by dEg. This increment dE,, is distributed over an
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elementary area, the vertical projection of which is equal to dy
multiplied by 1 (as the depth of the structure in the direction nor-
mal to the surface of the drawing is considered equal to umity).

. g
_§1 Unit pressure
| 8, graph
A
)
> E)
£ d\ |
> £,
AW
— D\ F ] ‘Ji,s
\ I==N
g% Total pressure  Fa
graph
fal )] frl
Fig. 107

Thus, the unit pressure veferred to the .vertical projection of the
surface it acts upon equals

Py = dy

or, in other words, it equals the first derivative of the resultant
pressure in terms of y.
Differentiating £, as indicated we obtain

Poy=y(y+tKg) K (8.7)

This expression shows that the unit pressure varies along the sur-
face AB linearly. In order to construct the corresponding graph
it will suffice therefore to determine the unit pressures at any two
points, say, at 4 and at 8 (Fig. 10.7¢)

PA="}’k0XqK; PB=?(h+kqu)K

Iet us now determinc the vertical distance from the centroid
of this graph to the foot of the wall, using for this purpose the
well-known expression giving the position of the centre of gravily
of a lrapezoid

__ h 2P, Pp
=Tt =0

If we now trace a horizonlal line through the centroid of the graph
until its intersection at point O with the rear face of the wall 4B
we shall find the point of application of the active pressure £,
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(Fig. 10.7a). The direction along which the pressure £, acts will
form with the normal to the surface 48 an angle equal to the angle
of friction 6.

Thus, the magnitude of the active pressure developed by a granular
material against some surface may be calculated using expression
(5.7); its point of application will be situated at the same level as the
centroid of the unit pressure graph, the position of the point may be
calculated using expression {(3.7), and the direction of the active pres-
sure will form an angle § with the nermal to the surface under consid-
eration.

The magnitude of the active pressure may also be determined
with the aid of the unit pressure graph. Indeed, from Pq”=d:;;
it follows that dE,, = Py .dy. Upon integration of both parts of
this equation we obtain

h
EQ=Squ-dy
0

The right-hand part of this equation represents the area of the
unit pressure graph Fig, (10.7¢). In other words

Eg=3(Pa+Pa)k (10.7)

The lalter expression is more convenienl for actual computation
than the expression (5.7).

Problem. 1t is required to compute the active pressure developed against the
lower part BC of the rear faco of a retaining wall 4B (Fig. 11.7) if p = 35°,
6 = 8° a = 20° e = 10°, y = 1.6 tons per_cubic metre and g = (.8 ton per
square metre. All the dimensions are indicated in the figure.

Solution. Using formulas (6.7) determine %, as well as the factors of the X
group

Hp=-2 =0.5m
Ty

(-] o
Ky cos 10°.cos 20 — 0.94
cos 10°

K __sin15° _ 0.258

1= e 10° — 0,985 — 1+ 208
= 3in 43° _\l/ 0.682 . 5= .
"‘““l/?os-13°><‘u.2_63‘ 0TI x0 g V& 2=165
K ens 25° - T 0,906 2 1 — 0,434
= [ 1-+1.65 % 0.263) eos llZP] cos18® (1‘43&X0.984 0,951
{
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This being done, dotermine the values of the unit pressures at points B
aml € using formula (8.7)

Pp=1.6(2.540.5%0.94) 0.484==2.06 tons per 8q m
Po=1.6(6.5+0.50.94) 0.434=4.84 tons per S m

Theroafter compute the area of the graph corresponding to the lower
portion of the wall face BC, this arca representing the magnituda of the

]
5
s
e 2.06,
=
" Ly g
#‘
#
5.84
Fig. 11.7

active pressure required

E—-’é-(z.06+4.84}4=13.8 tons

% The ordinate of the centroid of the graph will be given by the expres-
sion (9.7)

é_}( 2x2.0614.84
3 2.0614.84
The point of application of E will lie at the intersection of the horizontal

passing through this centroid and the face of the wall A€, The direction of £
will form an angle & = 8° with the normal U to this surface.

pm==

=1.73gmetres

7.7. PARTICULAR} CASESFOF PRESSURE COMPUTATION

() Pressure developed by an unsurcharged granular material
(Fig. 12.7). Substituting %, =0 in the expressions (5.7), (6.7,
(3.7} and (9.7) we obtain

E =1yl K (11.7)

Py=yyK; Pa=0; Py=yhK; z,='% (12.7)
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The direction of the cleavage plane will remain unaltered as the
factor K, is independent of the intensity of the surcharge g acting
on the surface of the earth.

{b) Pressure developed against a vertical smooth surface by a uni-
formly surcharged granular material having a horizontal surface.
This case was already considered above [see expression (4.7)I.

Fig. 12.7 Fig. 18.7

{lereunder we shall use the more general expressions (5.7} and
(6.7) for the same case. Putting e = 8§ = a = 0 (Fig. 13.7) in Lhe
expressions (5.7) and (6.7) we obtain

- _ sin{p—a)

CoSECOS T _ 4
1™ Cos (e—a)

cos (e—a) e

, _q/ sn{ptdjcosie—a)
Ko= l/ cos (8- 0) sin (p—ct) !

=sinp; Kg=

e cos {(p—E) ]? 1 . _cosdp  A—sin?p
T Lit+KoKy}cose] cos(e+d) (14sinp)® (14-sinp) ™
{—sinp

e tan? (45"——%)

With these values of the K factors, the expressions (5.7), (8.7)
and (3.7) become

E, =+ vh (h+ 2ho) tan? (45°—£. (4.1
2 2 )
qu=1‘!(y+ku)taﬂz (45:’_3) ]

2
|
P o= yho tan® (45°—%) (13.7)
Py =7 (k- ho) tan? (45“-%))
B b3k,

ZD='§--—}H_—2XO— (14-7)
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The position of the cleavage plane will he determined by laying off
as herctofore the length z, along the z-axis [see expression (7.7)}
where

Ty = Koh1= 1xh

The line connecting point £ with the foot of the wall repre-
senls the cleavage line required. The angle &, made by this line

Lt

pressare

graph
4

=

&

Fig. 14.7

with Lhe horizontal is equal to
9 =090°— / ABD = 90".—@_”_:2&";/’_9 -
LR

which coineides with ils value given by the expression (3.7) found
previously.

(c) The same case as in (b) bui without surcharge (Fig. 14.7). Sub-
stituting in the expressions obtained above h, =0 we obtain

E = yk?tan® (46°—% (15.7)
Py = yy tan? (45°— %) ; Py=0; Ppy—ryhtan? [45°_ £) (6.7
-

3
The position of the cleavage plane remains the same as in case

(b) when a uniform load was acting on the surface of the earth,
i. e,

T

By =45°+ £
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(d) Pressure developed against a polygonally shaped surface
(Fig. 15.7).

The pressure £, developed against the upper portion AB of the
polygonal surface ABB will be determined as heretofore using for-
mulas (5.7) through (10.7).

The pressure developbd against the lower portion BB, may be
computed approximately assuming that this pressure will he the
same as that acting on an equivalent portion of a plane surface
AsBB;. In order to compute this pressure, trace Lhrough point B
ihe line BD parallel to the surface of the earth and consider the
weight of the overlaying portion of the material as a uniformly
distributed surcharge of intensity ¢ = yho. The depth of this layer
hi will be taken equal to the sum of the thickness of the layer £,
the vertical projection of AA’ equal to 2, and the vertical projec-
tion of 48 equal to k. Computing ag usual the faclors of the K
gronp and substituting them in the usual formulas in which the
batter of the wall is taken equal to g, we obtain

Ey=4 o (W + 2K K

Po=vyy+MhK) K
Pp=vyh KK
Py =y (W +hKg) K
Bt R+ 3K,

ERESHS

The unit pressure graph for the case under consideration is repre-
sented in Fig. 15.76.

Fig. 16.7¢ represents a more complicated case which may be met
with in the design of reinforced conerete retaining walls provided
with a spur.

The pressure developed against a wall of this type will be deter-
mined separately for each of the plane surfaces constituting its rear
face. Thus, the pressures exerted against the portions 4B and CD
will be computed using expressions (12.7) in which the ordinates
yp and ye {corresponding to points B and C, respectively) will be
taken equal to & and the ordinate yp, of the point D equal to (R4
+ k). The factors of the K group will be computed using formu-
lag (6.7} in which & = e = 0; the unit pressure graph for both parts
will be given by one common straight line ab (Fig. 16.78).

The magnitude of the pressures developed against AB and CD
will be provided by the corresponding areas of the above graph

E(=hPy

.

Zp=

Eye=—g by (Pet Py
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The horizontal surface BC is subjected to the action of a verti-
cal load G equal to the dead weight of the material contained in
the prism ABCC; and equal to

There is no load applied to the horizontal surface FD.
As for the portion F it should be subdivided into two parts
FG and GH. point G being determined by the intersection with

iR a
Af \-"P '/‘,," y £
g 4 L
< 1 s 7B
B ]
] " h Py, B,
- 8 _;(, T ; = =
5 o Jo/ Fr =N
AF A0
% Je-7*
- 7}“‘* &3
&£
'J‘H \x‘““"—-\_
fal (&)
Fig, 16.7

the face of the wall of a line parallel to the cleavage plane and
pas<ing through point D. The pesition of the cleavage plane is deter-
mined vsing formula (7.7)

Tp= FK =CFKO

The factor K, entering this expression will be computed using
formulas {(6.7) putting % =0 and & = — &4, p, §. The portion FD
will be subjected to the pressure developed by the layer &, (Fig. 16.7)
alone, this pressure being independent of the weight of the overlay-
ing material. The corresponding unit pressure graph will be repre-
sented by a straight line cd, the slope of which is stecpor than that
of line ab. AL point G the unit pressure will be computed using
formula (12.7) for yg = h,. The pressure acting on the portion
of the wall considered will equal

E,— % haPo
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As for the pressure sustained by the wall below G it is alrcady
dependent on the weight of the whole granular nass. Therefore,
when unil pressures are determined at points G and H we must adopt

y&_:k—l—h:—l—kg; yH:h+h]+k2_‘|—h‘3

The corresponding graph will counsist of a straight line ef paral-
lel to e¢d and intersecting the graph axis at point «. The resultant
pressure sustained by portion GH will therefore be

Ey= hy(Pe+Pr)

(e) Pressure developed by water saturated earth (Fig. 17.7). In ihe
case under consideration the rear face of the wall AB way be regard-

A
A ;‘: =
T —_—
&y i Aa r— h\
N v.a—W=
i T ‘—‘_—_-r- :\
L} '*F‘:L,/l T ==\
5%_»;;‘} Yy VEasE 70'"’*

Pig. 17.7

ed as subjected separately to the hydrostatic pressure W and to
the pressure of the earth whose weight is reduced by the amount of
water expelled.
The lydrostatic pressure W can be found using expressions 6.7
through (10.7) on the assumption that
p=c=06=0 and hy=0
We obtain
2 o 1
th=0; KO:—O'; K.—.—_m
i e
}V:??ij cos e
I'he indeterminale value of factor K,indicates that the hydrostal-
ic pressure is completely independent of the position of the cleavage
surface.
Referred to the vertical projeclion of Lhe rear face of the wall.
the hydrostatic pressure at point B will equal
. 4
cose

w=ygH
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The point of application of W will be at the same level with
the centroid of the unit pressure graph
’ I

Zy=—m

3

In the computations relative to the active pressure of the earth
itself, its weight per cubic metre must be taken equal to y, instead

" %{u ‘ Ps,
) ] B2
B Py

Fig, 15.7

of y [see expression (1.7)] owing to the presence of water. In that
case expressions (11.7) and (12.7) will give

E=%yJeK

Py=yoyK
Py, =0

Pp=phK

Zg =‘3—

The total pressure sustained by the wall will be thus composed
by the hydrostatic prescure W and the earth pressure £ computed
with due regard to the alteration of its weight per cubic metre
caused by the water.

([) Pressure exerted by a layer of impervious soil surmounted by
water (Fig. 18.7).

Pressure computations are very approximate in this case and are
carried out assuming that the water acts on the upper part of the
wall situated above the surface of the soil alone, while the lower
part of the wall is subjected to the pressure of the earth on which
the water acts as a surcharge.

The hydrostatic pressure W will be computed as heretofore and
will amount to

1
cos g

W= ts(H—h)?
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Its point of application being given by

o H—h
AirD— 3

The vertical pressure developed by the layer of water on the
surface of the earth amounts to

=2y ({{ —P)
the depth fy of the equivalent layer of earlh being

Hle= vo(f—h)
Thi— v
As Lho surface of the carth is assumed horizontal (e =)

= COB € COS o
e R |
COs (& —t)

The vaJue of the active pressure E,, the values of the unit
pressures and the point of application of £; may be now [lound
using cxpressions (5.7) Lo (‘4 7)

By -2- vh (k= 2hy) K
Py =v{y+ ho)K

Pi‘i:'-”'*vk K
Py—=y(h+hy) K
h 2"1},4 Pr
5k PB +Pp

8.7. PASSIVE PRESSURE OF GRANULAR MATERIALS

The term passive pressure refers to the resultant pressure devel-
oped by a granular material against some surface when the Ialter
shilts over a very small distance towards this malerial.

The magnitude of the passive pressure may be determined using
the same wedge theory of Coulomb (see Art. 3.7), all the agsump-
tions made in the development of Lhis theory remaining valid.

When Lhe surface AB of Fig. 19.7a is foreed lowards Lthe granular
material a wedge ABC is Jormed again, this wedge behaving as »
solid body and sliding upwards along the surface AB and the clea-
vage plane BC. The lorces of friction which develop within ihe
wedge along the two surfaces just mentioned are directed upwards,
It will be remembered that in the case of the active pressure the
wedge moves downwards, and the forces of [riclion act in the same

20—85%
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direction. When a state of limit equilibrium is reached the passive
pressure £, (which is the resultant of the normal earth pressure
and of the forces of friction) will be deviated clockwise from the
normal U to the surface of the wall by an angle §. Similarly, the
resultant pressure Ry is devialed from the normal V to the cleavage
plane BC counterclockwise through an angle o equal to the angle

Fig, 19.7

of internal friction of the material. The resultant of the two pres-
sures By and Ry will be equal to the dead weight G, of the wedge
ABC,

The triangle of forces abe” for the case of the passive pressure
is represented in Fig. 19.7b. For comparison the triangle of forces
corresponding to the case of active pressure is represented in the
same figure in dash lines. It is clearly seen thal for one and the
same position of the cleavage plane the passive pressure is consid-
erably greater than the active pressure.

From the triangle abe” we can determine the magnitude of the
passive pressure K

F sin (& L9)
By, =Gy ey (17.7)
where
P =90°—e+-8

Comparing oxpressions (17.7) and (2.7), we come to the conclu-
sion that the magnitude of the passive pressure can be computed
using the expression for the active pressure, provided the angles
p and § are replaced by (—p) and {(—8). which is easily understood
if we remember that the forces of friction act in the two cases in
opposite directions.
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The angle ¥ of the cleavage plane BC with the horizonlal will
be again determined using the expression
dE;
S, S
di 0
The sign of the second derivative indicates that the value of the
passive pressure obtained with the aid of the above expression
corresponds to a minimum.
The gencral expressions for the computation of the passive pres-
sure ohtained by replacing p and § in expressions (5.7) and (6.7)
by (—p) and (~6) are

E;:%yh(h + 2hoK ) K (18.7)

Pog=v(h+4+hoK,) K’ (19.7)
The factors of the K group entering ihese expressions are
K; = E :'.:r.)[s;ap—_ c:;) |
K= fes
-y BEET
s (uﬂ;gji}os E-:Iz L‘-os(:—é) 4

The ordinale of the point of application of the passive pressure
will be derived from

(20.7)

2Pa+ P .
= o 21.7
Pa+Pu ( )
Tu case the rear face of the wall is vertical and smooth and the
surface of the earth is horizontal, the magnitude of the passive
pressure can be calculated using formulas (4.7), (13.7) and (14.7)
after replacing in these formulas p by (—p)

%y

e
e

Ey= 5 vh (k- 2h;) tan® (45°+ %) (22.7)
Pig = (y-+ho) tan® (455 ) ‘|
Py = yhy tan? (45*‘-%%) L (23.7)
Py =y (b hy) tan? (4557'!—;) !

.k hi|-3n

= (24.7)

20
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in the above expressions ki, is as usnal the thickness of the layer
of earth equivalent to the surcharge of inlensily 7.

The corresponding position of the cleavage plane will be ob-
tained by tracing through the top of
the wall 4 (Fig. 20.7) Lhe axis
2 making an angle —p with the
horizontal and by laying off along
this line a length AD" = x,=
= Koph=~h. The line 80" will rep-
resenl the projection of the cleavage
or slip planc on the plane of the
drawing. For Lhe sake of comparison
we give again in the same figure
the position of the cleavage plane BD
corresponding Lo the case ol aclive
s ) pressure.

Fig. 20.7 The triangle ABD" permits Lhe
determination of the angle W
formed by the cleavage plane BD’ wilh the horizon

0 =4h°—1. (23.7)

In conclusion it is worth mentioning that all the geaphical meth-
ods permilling the determination of the active pressure remain

Fig 21.7




8.7. Passive Pressure of Granular Malerials 300

applicable to the case of the passive pressure, provided the angles
p and 8 are replaced everywhere by (—p) and (—8).

Problem. Tt is required Lo determine graphically the passive pressure devel-
oped against the surface AB ofFig. 21.7, 1Lk = 5m, p = 40° & = b7, & = 20°,
o = 107, y = 1.6 tons per cubic metre.

Solution. 1. Start with determining the position of points A, M, N, 0, D,
€ and P in a way exactly similar to the one nsed above (see Fig. 6.7} but re-
placing everywhere the angles 8 and p hy —6 and —p.

2. Dolermine the position of the cleavage plane BL(C.

3. Measure to scalo the base and the height of the triangle OPC, which are
equal, respectively, Lo 11.0 m and 10.7 m.

4. Compute the area of triangle OPC

g =—,l— 11.0 % 10.7==58.%5 sq m

5. Determine the passive pressure oxerled against the surfaco AB

E"=1.6x58.85=194.2 tons
6. Compare the value of the passive pressure thus oblained with that
of the aclive pressure compuled for an identical case in Art. 5.7.
{ZL 94.2
E 838



8. STRAIN ENERGY THEORY
AND GENERAL METHODS
OF DISPLAGEMENT COMPUTATION

1.8. GENERAL

The stress analysis of redundant structures requires that use
should be made of displacement equations in addition to the usual
equilibrium equations. It becomes therefore necessary to delermine
the deformations and strains in different parts of the structure,
Moreover, the deflections of stalically determinate structures must
be also frequently determined, such structures having to fulfil cer-
tain requirements concerning hoth their strength and their rigid-
ity, in order to avoid excessive deformations under service loads.
For this reason the study of various methods of strain and deflection
compulation for elastic systems acquires the greatest importance
in the theory of structures.

This chapter will be devoted to the study of general methods
permitting the determination of the strains and deflections of
various framed structures, arches, rigid Irames, otc. We shall start
with reviewing certain questions concerning the work accomplished
by the external forces and the potential or strain energy accumu-
lated in various elastic systems during their deformation.

5.8, WORK OF FXTERNAL FORCES

During the loading of any system its clements aro put into mo-
tion, acquiring certain velocities and accelerations. It is clear that
the rate of growlh of the deformations will increase proportionally
to the rate of loading, and if Lhe latter becomes very small, the
momentum acquired by the system when passing from one state to
another will become quite negligible. Herealter this latter type
of loading will be referred to ns statical loading.

In order to determine the work of any external load P applied
gradually to any elastic system (Fig. 1.8) we shall make use of
Maxwell’s principle of superposition, provided the materiai fol-
lows Hooke's law. Consequently, the displacements suffered by
different points of an elastic system will be in direct proportion
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to the loads which have caused them. In its most general form this
may be expressed by the following equation

A=qaP (1.8)

In this expression A is the deformation sustained by the system
along the line of action of force P, and « is a factor depending on
the material itself, on the pattern and the dimensions of the struc-
ture and on the point of application of the load P.

Let force P increase by dP; this will immediately cause a cor-
responding increase of A by dA. The work performed by the load

/
q_/ E

Fig. 1.8

o

P along the displacement dA, neglecting as usual the infinitesimals
of the higher orders, will be

dA=(P+dPydA=PdA
Replacing dA by its value adP (1.8) we obtain
dAd=PdA=aPdP

Integrating this expression from zero to the final value of the
external load, we obtain the expression of the work accomplished
by this load during its statical application

P
Azagpdpz?{f
1]

As A=oaP, this may be equally written
1

It should be noted that the direction of the displacement caused
by a Joad £ may differ from that of the load. As the work accom-
plished by a load is always expressed by the product of a force by
the length of the displacement measured along the line of action
of this force, the displacement A will always represent the projection
of the total displacement of the load point on the direction of the load.
Thus, for instance, if a load £ acts at an angle p to the axis of a
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heam (Fig. 2.8), the displacement A will be given by the lenglh
of the line ab, this lenglh being equal to the projection of the total
defleclion e, on the line of action of load /.

The work accomplished by a couple or monient 3t can be found
in the same way provided the displacement A corresponds to that

Pig. 2.8

type of loading. Tt will be readily seen that in this case A must
represent the angular rotation of the cross section to which the
aforesaid moment is applied.

=4 8

Fig. 3. 8

Thus, the work accomplished by a moment I applied statically
to the beam of Fig. 3.8 will be given by

1
A= Md

where # is the angular rotation (in radians) of the cross section to
which the moment 9 is directly applied. Thus, the work accom-
plished by any external force applied gradually to an elastic system will
be always given by half the product of this force by the length of the
displacement measured in the direction of this force. The term force
applies in this case to any external action including moments,
distributed loads, etc.

As for the term displacement, it will mean the deformation cor-
responding to the type of action whose work is being studied. Thus,
a linear displacement will correspond to a concentrated load P,
an angular rotation to a moment 3 and the area of the displacement
graph of a loaded stretch to distributed loads.

When o system of loads is gradually applied to a structure, the work
accomplished by each of these loads will equal half the product of its
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magnitude by the displacement corresponding to this load but caused
by all the loads in question. I'hus, in the case of the beam of Fig. 4.8
which carries two concentrated loads #4 and P, and which is sub-
jected at the same time to the action of two moments M and M,
the work of the external forces will equal

A=Pidy_ P2ty | TD Moty
2 v B 2 2

The negative sign of the last term of this equation indicates that
the angular rolation of the cross section to which moment e

?ﬁ?, :‘.- -~ 7,2 .
Le_"i %, a

Fig. 4.8 Fig. 5.8

is applied is opposite in direction to the said moment. Thus,
A=zipi Tk (2.8)

The work porformed by the external forces along the displace-
ments caused by these forces can be equally expressed in terms
of the stresses (bending moments, normal forces and shears) which
are developed in the cross sections of the structurc under consid-
eralion. Let us take the bar represented in Fig. 5.8 and let us con-
sider an infinitely small Iength dx bounded by two planes normal
to the bar axis. The whole bar will comprise an inlinite number
of such scetions, If all the loads act in the plane of the bar axis,
the element dr will be subjected to a normal force N, a bending
moment M and a shearing force Q.

For a bar as a whole these actions constitute internal forces while
for the eloment dz they may be regarded as external loads whose
work will then be expressed by the products of N, M and Q by the
corresponding displacements sustained by the said element.

Hereunder let us study separately the work performed by cach
of these actions.

An element dr subjected solely to a normal [orce N appears in
Fig. 6.8. Tf we admit that its left extremity is held fast, the right-
hand ono will move along the direction of force N towards the
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right over a length equal to
A Ndz
R
where EF is the tensile or compressive rigidity of the bar under
«consideration.
The work performed by the stress N along the displacement A,
will be therefore expressed by
dAy=nNAs=— N5
T e T -
An element dr acted upon solely by a bending moment is repre-
sented in Fig. 7.8. Once again let us assume that its left-hand extre-

Ao

ax

¥=
|

-
ANTARRNRAN (NAARANANAN

— L

oy

=9
i

Fig. 6.8 Fig. 7.8

mity remains fixed in which case the angular rotation of the right-
hand one will be given by

i

LJ being the {loxural rigidity of the bar section under considera-
tion. During its statical application the bending moment will
therefore accomplish the work given by

Ay =5 Mhg =5 M2

Let us further examine the element dr of Fig. 8.8¢ acted upon
by a shearing force Q. If we fix again the left end face (Fig. 8.8b)
we must apply to the right-hand face transversal stresses TdF of
which the shearing force @ is the resultant. In the case of pure bend-
ing these transversal stresses will be given by Zhuravsky's formula

where dF is the area of a horizontal clementary strip situated a
distance y from the neutral axis, while S is the statical moment
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of that part of the cross seclion above (or below) this strip about
the same axis (Fig. 8.8¢). The magnitude of the mutunal displace-
ment of two identical strips, one belonging to the left end face
and the other to the right one, will be equal to the displacement

i i
) i, P
] b 1 é
I R T
q = 1 > 1
F—t +— O
/ —— ) 1
dx I
(@) (b) (@
Fig. 8.8

v dz of the right end (the lelt one being assumed fixed) and will
therefore be given by the expression

?dzu—-—z-dz

where y is the angle of shear.
Hence, the work of an elementary transversal stress TdF along

the displacement ydz will be given by
%1: dF-ydz

Integrating this expression over the whole area of the cross
section F we obtain the work of all the shearing stresses acting
across this section

ddq= yryazar= 52 ar = Gt ar =
r F :
_Q“dxg 82 gy Q2dz
= — l'z‘ri
2672 § b2 26K

In this expression GF is the transversal rigidity of the cross

" . ’ 82 3 ¢ ;
section considered, while n=%gb—2dﬁ' is nondimensional factor

7
depending solely on the shape and size of the cross section.

Denoting 1 % by A,, the elementary work ddo, will be cx-
pressed by
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In this expression A, may be regarded as the mutual vertical
displacement of the two cross sections bounding the element dr
(see Iig. 8.8b). For rectangular cross sections the value of factor
1 will be ohtained replacing in the corresponding expression £

by bh, J by TR and § by (— — i ) which leads toy = 1.2. For a
circular scclion the same procedure will yield ¢ —1— whilst for

11- or [or I-shaped section the approximate value of n = F—F— may

be adopted, /7, being the cross section of the web, If the elements
under consideration ace acted upon simultancously by a normal
stress N, a bending moment M and a shcar Q, the work accom-
plished by each of these actions along the displacements caused by the
two other ones will remain nil. Consequently, the total work will
be expressed by

: N M
dA=(£AN-{—dAM+dAQ=_;.( ZEM j“’_}_owv’ﬁ )

Integraling the expression of d4 over the whole length 7 of each
bar constituting the structure and summing up the results, we obtain
the following expression which permits the computation of the
work of external forces expressed in terms of the internal ones for
the whole structure

‘SMMd;‘E‘ES Nd_r § Q._f;tn) (3.8)
]

which may be written as follows

M2dx Nidz Q2 dx
"1=Et 2ET "’LS 2EF i 2GF (4.8)

In the expression (3.8) the letters M, N, and Q represent the inter-
nal forces acting over a cross section situated a distance x from

the origin of coordinates, while the terms ‘g‘?, ﬁ,dx nd de

are the corresponding displacements of the clement dr of the bar.
The above two expressions permit the cowmputation of the work
accomplished by the loads in terms of the internal stresses devel-
oped under the action of these loads. Expression (4.8) shows that
the work of the external loads will be always positive.
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3.8, STRAIN ENERGY

During the loading of a body the external forces accomplish
a certain amount of work part of which may be used to overcome
the internal friclion, to alter the femperature or the magnelic
properties of the matervial, cte. In the materials usually consid-
ered as elastic this part of the work is negligible and therefore we
may admit that all the work of external forces is transformed in
that case into potential or strain energy. The lalter is accumulat-
ed in the body under consideration during the period of increas-
ing strains and deformations caused by these forces. When the
body ig unfoaded, this energy is reslituted as work accomplished
by the internal stresses. As no energy is ever lost, we may say that
all the work A accomplished by the external forces is transformed
into strain encrgy W or, in other words, that

A=W

Substituting in this equation the value of A given by the
expression (4.8) we obtain

{ i !
- M2dx N2dzy Qdz 5
W:ES 2E7 -'r-ES LT +E§ or " (5.8)
0 b

The analysis of this exprossion leads to the following conclusions:

1. The strain energy is always positive, for the above expression
contains the values of the internal forces M, N and Q in the second
power.

2. The strain energy ig expressed by a homogeneous function of
the stresses or strains in Lhe second power, the strains being directly
proportional to the slresses.

3. The strain encrgy accumulated under the action of a certain
syvstem of forees is not equal to the sum of strain energics due Lo
wach of these forces separately and therefore the principle of super-
position is no lenger valid. This follows from the fact that the strain
energy is a Junction of Lhe second power of the stregses M, N and
€ and thal the square of a sum is never eqnal Lo the sum of Lhe
squares.

4. The strain energy accumulated in a body is independent of
the sequeunee in which the external forces are applied, the final
values of the stresses 37, ¥ and @ being independent of this sequence.
Consequently, the strain cnergy depends only on the final state
of an elastic body.

Statement 3 can be confirmed by Lhe following example. Lot
ns consider three dilferent ways of load application Lo the elastic
bhar shown in Fig. 9.8a, viz.:
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(1) loading by a single force P, (Fig. 9.80),

(2) loading by a single force P, (Fig. 9.8¢),

(3) simultaneous loading by both forces P; and P, (Fig. 9.8d).

The strain energy accumulated in the first two cases as given by
expression (5.8) amounts to

_ PU. __ Py
Wi=sgr: We=3gp
[n the third case it will be given by
W Pat P2l PU | PH | PPyl

2EF 3EF T 3EF EF

Comparing W, with the sum (W, + W,) we note that the sum
of strain energies due to each of the forces separately is not equal

LIS S,

£F-

(al

(c)

Fig. 3.8

to the strain energy due to the simultanecus action of the same
forces. Indeed

PPyl

EF

For a better understanding of the above equation let us imagine
that at first load P, is increased gradually from zero to its final
value and then remains constant while load P, slowly reaches its
full value in the same way. It is clear that the application of load
P, will causc the end of the bar to move downwards an amount
%, and that during that time the load P, (assumed constant) will
perform the work equal to %.

Thus, the last term of the expression for W, gives the value of
the work performed by the load P; when its point of application is
shifted by force Ps (or vice versa, it the sequence of loading is in-
verted).

The above example shows clearly that the principle of superpo-
sition docs not apply to the computation of the strain energy accu-

W3=W1+Ws“+‘
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mulated in an elastic body for otherwise the terms of the equation,
taking care of the work accomplished by one part of the loads along
the displacement caused by the other part of the loads, would be
complelely lost.

Problem 1. Required to determine the strain energy accumulated by an end-
supported heam of rectangular eross section (its width and depth equalling

o B 2

b and &, respectively), the beam being loaded by a couple IR acting at its right-
hand extremity(Fig. 10.8q).

Solution. Draw the bending moment and the shearing force disgrams as
shown in Fig. 10.8b and ¢ (normal siresses in this particular case being nil).
The magnitude of thesc stresses in any cross seetion will he given by

M= ?-z and Ox=%
Il}:\'trt)ducing these values in the expression for the strain energy (5.8) we
ohtain

i ] 4
_ P M2dz Q@dz I .
W—S"zEJ +S 5GP V= IEET ,§°‘ &t
o

me B mly M B g
+omgr S dz =5p (3EJ+G_F']_'T (Eﬁ*?ﬁ)

Let us compare now the ma%nit.udea of the strain energics due, on the one
hand, to the shearing forces and, on the other, to the hending moments. For
this purpose let us replace G, F, J and 1 by their values corresponding to a cross
section of rectangular shape

3
G =0.4E, F=bh, ot

=T and n=1.2
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T'his leads to

L 1.2y _ 2mu 8 [ h\2
S (W+o::4m)——m[’+ﬂ?) ]
12

The secend term in brackets vepresents the relative value of the strain energy

2 : -y : B

dun to the sheuring forpes. This term is directly proportional to the ratio -f-
where £ i3 the depth of the cross seetion and 1 is the span of the beam.

Henee, Lthe inflnence of the shearing forces will drop rapidly with the deerease

£ 3 1 ; %
wf this ratio, When the vatio iz equal to T {heams with a greater ritio are seldom

mel)
. 2m <
e i 2 R L
W FIiE (1] 0.03)
It follows that in the case nnder consideration the sirain encrgy due to the
shearing forces constitutes about 3 per cent of the total energy accumulated.
In the case of beameg mot with in acteal practice for which the vatio % is usually

much smallec, the influence of the shearing forees becomes quite negligible.

Problem 2. Required to deterniine the strain energy accumulated in the truss
of Fig. 11.8, all the elements ol this truss having the same cross seetion 7.

am

Pig. 11. 8

Solution. As the bending moments and shearing forces remain nil in all the
hars of the truss and as the nermal streszes ¥ and the rigidities EJF remain con-
stant over the whole length of each bar, exprossion (5.8} giving the amount of
the elrain energy accumnlated hecomes

I
. GNre N
= “E}Tg dz=238F (6.8)

In this expression N — total direel stress in each ol Uhie bars caused by the
svatem of loads applied
I = [ength of the bar.
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The sign 2 shows that the summation of the energies must he carried over
all the hars of tho tross. Of course, those bars which remain idle may be neglect-
ed, the produet ¥ remaining always nil when N = 0.

In the case of trusses an%

hould be earried out in tabular form as indicated hereunder.

similar structures strain energy computations

Table 1.8
Borno, | T g | - i
oe
1-2; 68 _2p 25 pe 5 125 4o
7 i
. 5 25 125
2-d; 4-G —",?[ ﬁf'z 5 -H—PH
78 35 2p e 4 e
57 7-8
2.3: 67 0 o 3 0
. 5 95 125
2.5; 5.6 —2p 2 5 2
45 P 2 6 6P

The last column of the Tahle contains the values of N2l for each bar of the
truss. Summing up all these values and dividing the result by 2EF (F boing
expressed in tons per sg m and # in sq m) wo shall obitain the value of the strain
energy accumulaicd in the whole of the truss

125

9= 19 o
W:(Z%nP2+21?P3+1I5P2x4+0x2'+2%P?r—f—ﬁ.m) 3 i

SEF =50 13 TR

4.8 THEOREM OF RECIPROCAL WORKS (THEOQREM OF BETTY)

Let us consider two different states of the same elastic system
in equilibrivm and let us assume that in the first state the system
is acted upon by a single statically applied load 2, and in the se-
cond by a statically applied load P, (Fig. 12.8).

We shall denote by A, the deflection sustained by any point
of the system, the first of the index letters m indicating the direc-
tion of the dejiection and the second » the number of the load which
has caused this deftection. Thus, A,,, will indicale the deflection
along the line of action of load m caused by the load n. When the body
is acted upon by a moment, A, will represent an angular rota-
tion expressed in radians. The action » may consist also of several
concentrated loads, moments or combinations of distributed loads.

*

*The compatation of stresses & has not been ineluded in the above Table.

21—853
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In the case under consideration the various displacements A
are:
Ayy = deflection along the direction of load P, due to the same
load
Ayp = deflection along the direction of Toad P, due Lo the load 2,
Agy = deflection along the direction of load P, due to the load 2,
Age = defleetion along the direction of load P, due to the same
load.
These four deflections are clearly shown in Fig. 12.8.
Let A4, be the work performed by load £, along the direction
of this same load (in other words, the work corresponding (o

T

#r
State I
fal N ———— ]
/'3 A f .
|r A i I 4 a1
] L ! !
! r i |
| ! 1 |
| I i 1
| 1 1 N
} t 1 '
: - P I
1 3fa'te I |
) \%——‘k/’;i,
/a d;z d 72 /4
Fig. 12.8

state I). Let also A4, be the work performed by the load P, along the
deflections corresponding to state 1I.

Expression (2.8) leads to the following values of the work cor-
responding to each of these states, provided the loads are applied
gradually

p Pizéu . B Pz;lzz

This work could alse be expressed in terms of the internal
forces acting in the beam [see expression (4.8))

[ 1
MEdx Nidz Qi dz
11;*=ES T +Z§ I +E§ 3cr ]
J g "
: M2 d : VEd : Q3d } =
W0 Midr ! r 3 X
4‘12::‘_"2'8 35T ""E§ SER +Z§ 5Gr )
1
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Let ug assume that the same system is loaded in the following
sequence: first, load Py (Fig. 13.8) is increased gradually from zero
to its final value; the deflections sustained by the system and the
stresses developed in that case will be exactly the same as those
corresponding Lo state I of Fig. 12.8a. In particular, the deflection
under load P, will equal A;; and the work performed by this load

during its application will amount to 4,,= I—% After that let
load P, increase in the same way. This will entail the development

ol additional slresses and deflections, Lhese stresses and deflections
being equal to those sustained by the system in state 11 of Fig. 12.8b;

Flasii curve due Etastic curve
Lo Iy and Py due to £y

Fig. 18.8

thus the additional deflection at the point of application of load 7,
will equal A,. As the load 2y did nol vary during the application of
load P it will travel downwards a distance equal to the additional
deflection Ay, petforming the work A4 = PyAyy; at the same time
load P, will perform the work 4, = Pz::zz. It Tollows that the total
work accomplished during the loading of tho system first by load
Py and next by load P, will equal

| A oA
A=J‘111“|"Au““1‘122=%*E‘Plirz%'—zg—m (8.8)

At the same time the work performed by loads P, and P, may
be expressed (see 12q. 2.8) by half the product of «ach of these loads
by the Lotal dellection along the direction of this load (Fig. 14.8).

A= L1348 P (Apy - Ag0)
= L L

+ )
Lqguating the above two expressions we obtain

MA P Pyl -+A Po(Agy+Am
TG PR 2222= : 1;1-:-12]4_ > 212 22)

2
wherefrom

PilAgg= PyAy,

21®
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The product P;A;, represents the work A,, performed by load
P, {corresponding to state I of Fig. 12.8a2) along the deflection
caused by load P, following the dircction of load P, (state II of

&

Fig. 14.8

Fig. 12.80). ln he same way P»Ay vepresents the work 4,5 per-
formed by load P, of state J1 along the deflection following the line
of action of this load eaused by load £ of state L.
Consequently
Ay = Ay, {9.8)

The same resull would be obtained if the body under considera-
tion were acted upon by any number of concentrated or distrib-
uted loads or moments.

Thus, the work performed by the actions of state I along the deflrc-
tions caused by the actions corresponding to state I is equal 1o the work
performed by the actions of state I along the deflections due fo the
actions of state I. all the deflections being mrcasured in the direction
of the smd actions.

Let us express now the work A, in terms of the bending moments,
normal stresses and shears developed in the first and in the second
slate.

From expression (3.8) we obtain

A.m":.:‘].——.(lu_——.l‘igz {1“.8)
Ilere A represeuts the total work produced by loads £, and

P, along the displacements due to these same loads. Using expres-
sion (4.8), this work may be expressed by

- (o) d y

I
{ﬂrfi—|- 3‘13}2 dr " Z g (Ni 'T.Ng‘a dx %
SRy == 2EF S
i3

T

0

In this expression M. N, and @, are respectively the bending
moments, the normal siresses and the shears developed in the
members of the system under consideration due to (he application
of load 7, while My, N. and Q, are those due fo the application
of load P..
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The sums (M, +~M,), (Ni+Ny) and (Q;-+@2) represent the
total resultant stresses in cposs sections due to the combined action
of both loads Py and P,.

[ntroducing the value of 4 given by expression (11.8) into expres-
sion (10.8) and using the values of Ay, and A, derived from equa-
tion (j7.8} we obtain

4 M2 — s N Z_Ni— N2
‘1‘2225(151—4-’”’2‘1‘&.] 1‘{1 ﬂf‘ld i‘ES ( 1—’_;\2&.‘” i— 3 (‘f?‘—i—

0
{ e, ¥
Ly : (04 FQz):(;.(?f—O% N dz
0
whertlrom
I
~‘1|e=2 le M; M-,d:c +ES ; N-Zdr +2§0L (s dx ) {12.8)
0

In this expression each of the terms preceded by the integral sign
may be congidered as the product of a total stress (say, the bending
moment M,) due to t.he actions of state I and the total strains of

d )
Mz - que to the actions of state [L.

the element dr, say, =2 77

3.8. THEOREM OF RECIPROCAL DISPLACEMENTS (THEOREM
OF MAXWELL)

Lot us take up once again two different states of one and the
same system, the first state corresponding to the application of a
unit load £, and the second to that of a unit load P, (Fig. 15.8).
Herealter we shall use the sign § to indicate the displacements
{(strains, angular rotations or deflections) caused by unit loads
P == 1 or unit moments I = 1, in order to distinguish them [rom
those duc to loads or moments of arbitrary magnitudes which shall
be denoted by A. Thus, 8§, will indicale Lthe displacement due to
the unit load P, along Lhe direction of load P, whilst 8, will indi-
vale the displacement along the line of action of load P; due to the
application of load unity 2,.

Tn the preceding article we have shown that

Pi‘sﬂ =P2621
As P,=P;=1, this expression becomes
612'_—"621
Goeneralizing we may write for any unity actions
Smn = b (13.8)
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The expression thus obtained is the algebraic expression of
Mazxwell's theorem which runs as follows: in any clastic system the

State T
Al
[
=) o
— % i
I
I

State IT
1

|

|

I

I

|
: IP3= 1
i
M

12
Fig. 15.8

displacements caused by a load wnity along the line of action of another
load unity are always equal to the displacement due to this second load
unily along the line of action of the first one.

Eguation (13.8) will obviously remain trne even when loads P,
and P, have arbitrary but equal values. In this case the said expres-
sion will become

A]g-'—'Agi (14.8)

An illustration of Maxwell's theorem is afforded by the example
of Fig. 16.8, In state I the beam with a built-in end is acted upon
by a unit load Py while in the second one by a unit moment .

The rotation ¥, due to the unit load 2, must be numerically
equal Lo the deflection y; due to the moment I, ie., 4, = y;.

Let us compute now the values of &, and of y; using one of the
pracedures developed in the treatises on the strength of materials,

In state I (Fig. 16.8q)

1 Pa? Pa [
and in state IT (Fig. 16.80)
_ 1 i? (f—a@®q_ Wy, a
y;._ﬁ[—mz?-+-m1 ) ]‘ —EJ (I 2 )
Since M- P =1

ia [+8 a i
ﬂ"‘___ﬂ(z"—'z—) and g - T EJ (Z__f)
which confirms that

1

Y=y
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The strains and displacements caused by nondimensional unit
loads P =1 and moments M = 1 differ in their dimension
from the usual strains and deflections.

Indeed, the dimension of a displacement caused by a wunit
load is given by the ratio of a displacement to the action which
has caused it. Thus, in the previous example the angle of rotation
&, produced by a nondimensional load unity P = 1 (which is en-
tirely different from a Joad equal 10 1 ton or 1 kg) will be expressed

(@) State I p=7
]
fv—-‘-;i-_-__—-:- =
Z _“_H‘-"-_‘-"hi’da
& ~
£
(0) Slate IT
- m=1
a Bt A &
- L
Fig 16. &

in kg~!. Similarly the deflection produced by the unit moment
M — 1 will also be cxpressed in em per kg-cm or kg™!; in other
words, its dimensionality will be exactly the same as that of an
angular rotation due to a unit load.

6.8. METHODS OF DISPLACEMENT COMPUTATION

Let us congider two different states of one and the same system.
1n its first state the system is acted upon by any number of loads
and moments whose values may be chosen at will (Fig. 17.82) and
in the second state by one single load unity P, (Fig. 17.8b).

Let us compute the work 4, produced by the load unity £, along
the displacement Ay due to all the actions of state I

A21 e P:!in o 1A21 = Agy
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il‘his same work i3 expressed in terms of the internal stresses
using formulas (9.8) and (12.8) becomes

! 1 1
= Mdx = N o - ~ -
—421:E§M2 ﬁfﬁm+2§ﬁ’2;€—ﬁ,x+2502£{h{in (15.8)
0

{The dashes placed over M,, N, and Q, indicate that these stresses
are due to a load unily.)

Thus the displacement caused by any combinalion of loads may

be oxpressed in lerms of the stresses developed by the said combi-

nalien and by those duc to a load unity, The line of action of this

tal Actual siale (stateI)

VD o ~

w

|

FbY Unit statetstate IT)

l,r.?z=f

Fig. 17.8

load unity must coincide with the direction of the displacement
under consideration,

When a linear displacement is required (say, a deflection at any
point of the systom) the load unity must be a concentrated nondi-
mensional Joad acting at this particular point. If, on the other
hand, it is required to find the angular rotation ol a certain cross
secltion, the unit action must he a nondimensional concentrated
moment applied to this section,

ITereafter we shall refer to that state when a single load unily
is applied to the system as the imaginary or unity state, while the
case when the same system is acted upon by the combination of
actions effectively applied will be referred to as the real or actual
state. In the same way the term unif graph or unit diagram will
refer to the graphs of the stresses developed under the action of a



6.8, Methods of Displacemeni Computation 327

load wunity, these stresses being denoled by M, N and Q ,while
the diagrams of stresscs due to the actions effectively applied will
be termed actual or real graphs and the corresponding stresses will
be designated by My, N, and Q.

In certain cases it becomes more convenient to use alphabetical
indices in expression (15.8) instcad of the numerical ones (say,” m
and n, or p and k). The expression becomes in this case

) i I
= | B = ([, . ;
A =2 { Mn g Z 43 (Np 2202 4+ 3000 2820 (16.8)
0 0 0

where A, is the displacement along the line of action of Joad
unity P, due to the actions applied in reality and belonging lo
the group r.

When the cross sections of all the members remain constant, the

expression 16.8 may be rewritten as follows
; 1 ]

Koo S %SM,,.M,‘dz+E-E1.—F zxf,,,Nnd:chza'-}SQmQ,, dz (17.8)
0 0 0

The three expressions (15.8), (16.8) and (17.8) are frequently
referred to as the general displacement equations or Mohr's equations.

For the computation of displacements with the help of these
expressions the ifollowing sequence will bho adopted:

1. In the first place determine the stresses M,, N, and Q, due
to the applied loads for an arbitrary cross section in terms of ils
abscissa .

2. Apply a unity action at the cross section whose deflection or
angular rotation is required, a concentrated load corresponding
to a deflection or any other translation and a moment to an angular
rotation.

3. Compute the stresses 47,,, ¥,, and @,, due to this unit action
for the same cross section situated a distance = from the origin of
coordinates.

4. Introduce the values of the stresses 3,, N, and @, as well
as those of M,,, N, and @, in one of the three expressions (15.8),
(16.8) or (17.8) and integrate along all the elements of the entire
structure. When the displacement A, thus obtained is positive,
its direction coincides with that adopted for the unit action and
when it ig negative, it is oppusite to the one adopted for the
unit action.

In the design of the redundant structure it is sometimes required
to find the mutual displacement of two preselected points. In that
case a system of two unit loads of opposite direction should he
applied along the direction of the displacement required, these



330 Strain Fnergy Theory and Methods of Displacement Computaiion

unit loads being replaced by unit momenis when the displacement
in question is an angular rotation. Thus, if it were required, for
instance, to find the increase in the distance between points € and
D ol the portal frame appearing in Fig. 18.8¢, unit loads acting along
the line €D should be applied to both of these points as indicated
in Fig. 18.8b. All the computations will be carried out thereafter

7

o !
Pebridiledetabiifiy )
i) J//ZT B‘-- ;
/C/ Q_ c.
a /.:/ ™~
(a} (e i {b) el A (‘?) Ll

Fig, 18.8

using Mohr's formula in the sequence mentioned abovo, keeping
in mind that the stresses M,,, N,, and Q,, will be those developed
under the simultaneuos action of both load unities just mentioned.
If the displacement obtained is positive, ils dircction coincides
with the one adopted for the load unities, in other words, the dis-
tance between points € and D will increase. 11, on the contrary, the
displacement obtained were negative, it would mean that points €
and D are brought closer together,

The relative angular rotation of two cross sections of some struc-
ture may be calculated in cxactly the same way. In the example
just mentioned two unit moments should be applied in that case
to points € and D, these moments acting in opposite directions
as shown in Fig. 18.8¢, As for the computations themsclves, they
will not differ in any respect from those just described for the case
of a linear translation.

In the majority of cases, only one lerm of Mohr's formula has
to be retained. Thus, if the structure works mainly in bending
{this being generally the case for rectilinear beams, portal and
building frames as well as for flat arches) it will suffice to use only
the term containing bending momenls. Similarly when the members
of the structure work mainly in direct tension or compression, as
is the case for all the hinged systems, both terms depending on the
bending moments and shears may be neglecled withoul any appre-
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ciable reduction in the accuracy of the results obtained. Tn all
that follows, with the exception of a few specified cases, we shall
always neglect the influence of normal stresses and shearson the deflec-
tion of rectilinear beams and rigid frames.

If the element under consideration is a curved bar whose radius
ol curvature is at least ten times as great as the depth of ils cross
section, Mohr's formula for rectilinear bhars may be used, provided
the length of the straight element dz is replaced by the length of
the arch ds. The influence of normal stresses and shears may be
usually neglected.

Problem {. Determine the doflection of an end-supported beam of constant
cross seclion acted upon by a concentrated load P, at midspau (Fig. 19.84).
All the throe terms of Mohr's [ormula should be used.

Solution. The imaginary state of this beam witl cerrespond to tho applica-
tion of a concentrated load ity in tho divection of the deflection required
(Fig. 19.85). The normal stresses will remain constanlly nil and therefore
Mohe's formula will hecome

!

I
5 i — ] il
Amne=2 T MpMp dz-L % TF S Omln d.z:;w;.\':,{ﬂ ‘E"Af}?m
0 (i}
where
1 i
Y, =2 S MM, dz

1]

is the deflection in pure bending (i. c., due solely to the bending moments)
whilst

!
Agnzz ?nﬁ S am(.)rr. da
i
i~ the part ol the Lotal dellection caused solely by the shearing forces.

For all the cross sections of the beam to the ieft of peint C the bending
moments M, and M, and tho shearing forces ¢, and @, are given by

2 —
.'-"l‘fn'-*—“TnI ,M'm:.-%.:
P - 1

On"—-'—-zﬁ Qm=*'.z

The corvesponding graphs are given in Fig. 19.8¢, d, ¢ and {. Introducing
these values inlo the expressions giving the two diiferent parts of the total
deflection, we obtain

/2
2 ¢ 2 P P13
M L _'_r.r. = L3
Amn=F7J S = ey
0

1-2
32 2y 1 P, T4 Pl

" GF 0“2" 2 4GCT
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The beam being symmetrical about a vertical axis, we may integrate
only along one hall ol its length, say, the left vne, The total deflection
will be given by i

M P Pyl
B =M+ 800 = Rie7 + 26T

Actugl state
4

(@) 5[”’ £ ] "E;:L"_ﬂ

i
I
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When the value of this deflection iz positive, ils direction will coineide with
that of the load unity (if @ negative value were obtained, it would indicate that
the keam is deflected in the opposite direction).

Let us now determine the relative immporlance of both parts of the tolal
deflection, the one due to the bending moment and the other due to the shears.
,et the cross-sectional dimensions of the beam be & and & with & — 0.1 4,

AJn  PUSES _129ET

AT PL%FG | PTG

T

Replacing in Lbe above expression J, F, n and G by the following values

1k bis bl
i e B s P I T =04
12 13,000 F=bh o =12 and G=04EF

we oblain

AZn 42X 12X EMBX10_ 3
AM 12,000 X {2 x tasel 100
mn

It follows that the deflection produced by the shears amounts to 3 per cent only
of that part of the deflection produced hy the bending moments.

; p .k :
The influence of the shears will decrease together with the ratio — , and [or

[
i
h = o5 e have already
aa?&.n -
AM 400
Smn

It is obvions that in the great majority of cases the term A% way be

completely neglected by comparison with the term AY _ Thus we obtain

M
the well-known expression

pL3
M T
Arin=Amn = 7557

Problem 2. Compnte the vertical deflection Ap of point € of a uniformly load-
od heam built-in at its left end (Fig. 20.8a).

Seolution. The hending moment curve due to the uniformly distributed load
is represented in Fig. 20 86, The magnitude of the bending moment at any cross

-2 B
section a distance « from the right-hand end of the beam equals --—?—-'_;- . The imagi-

nary =tate will correspond to the application of a concentrated load unity at
point €, its direction coinciding with that of the deflection tequired, i.e., heing
vertical (Fig. 20.8¢). The diagram of the bending moments M,, induced by the
Inad unity P, is vepresented in Fig. 20.8d. 1t 1s clear that this moment will
differ from zero only at the eross seetions of the beam situated to the lelt of

puint € (at% & T I) where its amount will be given by M, — — I_""i*'

Neglecting the sliears and integrating the term depending on the bhending
i o - . y
moments from -z-to 1 (M, remaining constantly nil to the right ol section C)
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we obtain, using expression (17.8),
I I

1 R vy 1 Ly g2t i
Ae=17 S MM dz=p= S (x—g]—z-dx-—
I 13

i
N s_f“_l) _L(fij_“{)‘ -
"'2!&‘!152 (I 5 )¥ = \T— % )12~

G [B B 2 (1230 ATl
ET LT 6 T ]"..%34;;}'

4 6 4 6

+# Problem 3. Determine the maximum translation of point 4 belonging to the
sutral axis of a curved beam as well as the angular rotation of the ¢ross seetion
paszing through this same point (Fig. 21.8q).

Solution. The influence of the shears and normal Jorces being negligible and
the direction of the translation remaining unknown, we shall compute separate-
ly its horizontall and vertical components induced by the bending moments.
The total value of tho displucement will be found thereafler in the usual way.
The magnitnde of the bending moment induced at any section by the load P
is given by

My=PRsing

In order to deteanine the horizontal component Ay of the total displacement
let us apply at point A a horvizontal load unily as indieated in Fig. 21 .85,
The value of the bending moment induced in this case by the load unity will
constitute for any scclion
M=1-Rsinp=Rsing
Remembering that ds= R dp, Mohr's formula (16.3) becomes

=1 — I
YeTM M ds 0 PRsingRsingR de
Ayp= S T ET =
=0 1]
PRI G PHY (@ sinZy\%  nPK3
L vkl e PO 20 U
=57 §s‘" e e (2 4 )n 25

The value of the dizplacement thus obtained being positive, its direction will
coincide with that adopted for the load unity in Fig. 21.82.

Let us compute now the vertical displacement A,, of this same point A.
For this purpose we shall apply a vertical load unity as indicated in Fig. 21 8¢
In that case the hending moments induced by the load unity become

My=—1-R{(1—co8 @)= — I (1 —cosq)
Using once again expression (16.8) we obtain

Q=1 — I i
MpMyds o RPsing[—R(1—cosq] Rdp
Aopy= —FF = 57
=0

T

T
PR3 . . y _ 2PR®
=57 (S —singdg I—Ss,n peoseg rft]’.) B
o 0
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This displacement being negative, point 4 must Lravel in a direclion
opposite to the one selected for the loud unily, i.c., upwards. The tolal
displacement of point A will be given by

T T nPR32 PR32 pRs it
=} y - = —— e | —— —_ e Bl Y.
Sa=V Ay +2% V(z;a.r) =) =z V 7+
The angular rotation Ajp of cross section 4 will be oblained applying to the
«nid eross scction an imaginary unit moment M (Fig, 21.84). In that case the

bending moments induced in the beam will remain
4 constant and equal to unity. Consequently, the

angular rotation of cross section 4 will be given by
\ 1),
=1 -_— T
‘,.-94_\ n wS My My ds S PRsingp-1-R dg 2PR?
ip= = =

EJ Ld BT

p=0

5 3
‘F" The direction of this rotation will coineide
4 with that of the unit moment, which means that
the cross section will turn counterclockwise.

i Problem 4, Determine the angular rotation of
the free end € of a kwnee frame appearing in
Fig. 22.8 Fig. 22.8,

Solution. Apply to seclion € of the knee frame

a unit moment M tending to turn this section in

the direction of the rotation required. In that case the normal forces and the
shears throughout the strmcture will remain constantly nil and Mohr's for-
mila will comprise one lerm only depending on the bending moments even il
it were desired to account for all the stresses induced in the structure.

Actual siote Imaginary stele
g{_]z /;’f:ﬂ'
Sle, . I
== x | = g J| M
b : 2 ‘*l —
—--z‘—-"*”Mn @ % M @
;_‘,/_/_ A (o) e ™ (6

Fig. 23.8

Draw the two bending moment curves, one for the distributed loads g effec-
Lively applied and one for the imaginary unit moment M. These two curves are
given in Fig. 23.8q¢ and &, vespectively. Analytically the valucs of the bending
menents for both cases will be given hy:

for the upright

2 —
M= —% and M= —1
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for the borizonlal beam

2 —
M= —% and Mp=—1
Introducing these values in expression (16.8) we obtain
g
i a
NN O Y E NN SO VT
‘F_A””“S 7 EJ d”+§ I ¥ 3 S
; ;

7.8. TEMPERATURE STRAINS
Mohi's formula (16.8) may be written as follows

i i I
Ama =12 nS MmAgn+ 2 ﬂ NonAun+3 S Quuryn (18.8)
1] 1] -0

where Ay, = JL{,:‘JiC = mulual angular rolation of the Lwo end faces
of clemenl dr induced by the applied loads
Ny = :’\;;x = mutval linear displacement of the same
faces along the axis of the element
A =—(% 1= Lheir mutnal displacement in the direclion

normal to the axis of the member (sce
Art. 2.8).

In this transeription Mohr's formula may be utilized not only
when the displacements Ag,, A., and A,, of an element dz are
indaced by stresses themselves due to a system of external loads,
but also in the event the strains are due to a change in tempera-
ture. Consequently, this expression may serve for the solution of
problems connected with thermal expansions and contractions.

Assume that the temperature of the top fibres of element dz has
been raised by #; and thal of the bottom ones by #; (Fig. 24.8). As-
sume also Lhal within the body itself the temperature varies linearly.

The expansion of the top fibres of the element dz will equal «t,dx
and that of the boltem fibres wi,dz where o is the coefficient of
thermal expansion. In the case of a symmetrical cross section the
expansion at midheight will equal hall the sum of the expansions
of the exlremc fibres

A (112-5- t2) 7.

The mutual angular rotation of the two cross sections bound-

ing this clement will he given by

Agn = Mgy :E‘..S.‘_le dr

22—853
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As the rise of temperature will lead to no vertical displacements
of the element dz the teem A, will remain nil.

Introducing the above values into formula (18.8) we shall obtain
the expression permitting dicect computation of strains and de-
flections arising from lemperature changes®

; ?

1 ;

t—in P ty s P 5

I Amlzzm ! b 2SMmdx4-za%Sdex [ (19‘8.\"
0 0

[ this expression the sign T indicales that the summation must
be carried over all the members of the system.
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Fig. 24.8

it is obvious that only those members which have been submit-
ted to a temperaturc change must be taken into consideration.
For rectilinear or polygonal bars of constant cross section the cor-
responding integrals may be computed as the areas bounded by
the diagrams of unit stresses, which permits to reduce the above
expression to the following form which is extremely convenient
for practical design

Amg = S0 12 Qg+ Za 1520y (20.8)

Here Q3 and Q% indicate the areas bounded by the M and N
curves. When the cross section is nonsymmetrical about its neulral
axis Lhe term t“;f" must be replaced by ta—}-“_’;
distance of the lower fibre to the gravity axis.

+

*This expression will be valid only if t.he_ change in temperalure and the
height of the cross soction do mot vary within the length of each particular
meraber forming the structure.

ts B
y where y is the
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The signs of all the terms appearing in the ahove formula will be
obtained as follows: when the strains of element dz induced both
by the varialion in temperature and by the load unity are of the
same direction Lhe corresponding lerm of the equation will be
posilive; if it were otherwise, the lerm would he negalive.

In the computation of thermal displacements the sirains and
deflections produced by the shearing forces may no longer be neglected
for their relalive value may be quite appreciable.

Problem. Required the vertical displacement of point € of the knee frume
appearing bn Fig. 22.8, when the indour temperature rises by 10°C, the cutdoor
temperature remaining constant (Fig. 25.8a).

+ L
mul* 10° 'W‘
ool 7 K —
L = < T / Imﬂmm
0 ¥ fa} -
Y7 i
= i | @
:;:;. e
T (6) T (e)
Fig. 25.8

Solution. Apply a load unity along the direction of the displacement requi-
red and draw the corresponding M and N curves (Fig. 25.5%0 and ¢j. The areas
bounded by these curves will amount Lo

J_={.a=0a
S!\=== %

ai
—_— — 2
Q= 3 +aa= 1.54

Let us also compute the terms depending dircetly on Lhe teraperature
change

ity 0-+10
2 2

| tymtg]=|0— 10| =10

1t should he chserved that tho last term representing the total chinge
in temperature must be always taken in absolule value regardless of ils sign.
It should also be noted that an increase in the indoor temperatnre Jeads to
an extension of the inmer fibres of the knee frame while the unit load shown
in Fig. 25.8 causes their contraction. Consequently, that term of tho equation
which accounts for the bending moments will be negative. The same will apply

22%
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to the term mccounting for the normal stresses, for an increase in temperature
leads to an extension of the upright while the load unity adopled entails its
contraction. Consequently

& a®
At =—o0a— 15 T

8.8. DISPLACEMENT COMPUTATION TECHNIQUES

In a number of cases displacement computations may be sim-
plified very considerably by the introduction of a special technique
‘v'&"-,-..;': g Ib i
for the calculation of Lhe integrals helonging to the type \ M, M da*,

L]

We shall name this technique the graph multiplication method
for it is based on the fact that the expression preceded by the sign
of the inlegral contains the product of two ordinates to the M,
and M, curves. This technigne will apply, provided at least one
of the cneves (say, that of A,,) reduces to a straight line. The other
diagram may be bounded by any curve or broken line. The ordi-
nate to any straight line may be always expressed by M, =
— r tan «; the meaning of z and o being clearly shown in
Fig. 26.8.

Introducing this value of 3, into the integral under conside-
ration, we obtain

i '
M, M, dz=tana S M, dz=tana im aQ,
[
0 0

S =

where M,dr = dQ, vepresenis the differential of the area Q,
bounded by the A, curve (Fig. 26.8).
4

Consequently, the expression S;rdQn represents the statical

1]
moment of the graph area about the 0-0" axis (Fig. 20.8).
It is well known that this statical momenl may be expressed by
t

g 2dQ, = Qnx,
b

+

*he same Lechnigue will apply to similar integrals
1 1

S NmWN, dr and gﬁan dx
*
i i
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x, representing the abscissa of the graph centroid. It follows that
3
Sﬂ?mMnd:c:zc tan a2, but since z. tanc =y, we obtain finally
0

1
S ﬂmﬂfn dz":gnyc (218)
0

Hence, the product of the multiplication of two graphs, one of which

at least is bounded by a straight line, equals the area bounded by the
graph of arbitrary outline multiplied by the ordinate y, to the first

M, graph Gravity eemtre of My graph
o a82,,= Mydx
@ o ZJ M, rrid
B L e
i grah | i
i I
I
J M a.i* Soomdas
SR et =g
&
l" ; ] X
i
Fig, 26.8

graph measured along the vertical passing through the centroid of the
second one. This produet will be reckoned positive when the graph
of arbitrary oulline and the ordinate to the rectilinear graph are
both of the same sign and negative when the two are of opposite
sign. This procedure has been suggested in 1925 hy Prof. A. Vere-
shchagin when he was still a student of the Moscow Railway Trans-
port Institute and Lherefore in the U,8.S.R. this method is known
also as Vereshchagin's method.

1t should be noted that the Ieft part of expression (21.8) differs
from Mohr’s integral by the absence of the factor % . Henee the
result of the graph multiplication carried out by Vereshchagin's
method must be later divided by EJ,

It should be always kept in mind that the ordinate y, must be
measured on the graph bounded by a straight line. 1f hoth of the
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graphs were bounded by straight lines the ordinate y, could be
measured on any one of the two. Thus, if il were required Lo find
the product of the graphs for M, and M, of Fig. 27.8a one could
either mulliply the area Q;, bounded by the Af; curve, by the vrdi-
nate y, measured along the vertical passing through the centroid

M, graph

(6)

[x]
5
o

(d)

Fig, 27.8

of this area to the M), curve, or else one could multiply the arvea
Qy, bounded by the M, curve, by the ordinate y; measured to Lhe
M, curve along the verlical passing through the £ centroid.

When a trapezoidal graph has to be multiplied by another graph
of the same shape, it is convenient Lo subdivide one of the two
into two triangles as indicated in Tig. 27.85 and to multiply there-
after the area of each of Lhese Lriangles by Lhe ordinate te the
other graph wmeasured along the vertical passing through the cen-
troid ol each of these triangles.

Thus, in the case just mentioned we would oblain

l bl lr2 d bl 2d L
Fratzu=3 (F+3)+7(5+7) g e+ 2d+adtbo)
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The same procedure could be followed if each of the two graphs
consisted of two triangles of opposite sign (Fig. 27.8¢). One of the
two graphs could be replaced by Lwo triangles A8C and ABD the
ordinales Lo which would remain of the same sign along the whole
lenglth of the graph. The introduction of two additional triangles
CBK and AKD would have no effect ov the final results for their
ordinates are equal in value and opposite in sign.

Multiplying the graphs of Fig. 27.8¢c we would obtain

! bl ! bl
3 ya+(—3) (—yb}=a—2~ Yat5 Yo

When one of the graphs is bounded by a conic parabola, the area
of this graph should be subdivided inte two triangles and a para-
bolic segment. It will be remembered thata parabolic graph is

¥r
n - 502 . o] B 7z
(a) ' i ici i | 13
t | T T
l 1 I : 1
| I | | :
3 | Qz | 3
i Q 1 1
v A TN o _ BTN
QZ
Fig. 28.8

peculiar Lo Lhe uniformly distributed loads and that the ordinate

: ; 2
to the centre of the parabolic segment is always equal to g—;—-.

It may happen that both graphs are irregular in shape but one
of the Lwo is bounded by a broken line. In this case both graphs
should be subdivided into a number ol portions so that in each of
them at least one of the graphs should be bounded by a straight
line. Thus, if it were necessary to multiply the two graphs repre-
senled in Fig. 28.8¢ and b, both should be subdivided into two
parts, the result of their multiplication being given by the sum
Qe + Qoya.

One could also subdivide these graphs in three portions as indi-
cated in Fig. 28.8¢ and d. In that case the result of their multipli-
cation would be given by Q¥ + Quys + Q..

Vereshchagin’s method requires the rapid evaluation of graph
areas of different shape and the determination of the position of
their centroid. Table 2.8 represents the areas and the eentroid
positions for various graphs and is intended to facilitate these
computations.
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Table 2.8
Posjtion of the centroid
No. Shape of the graph A{_{a
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= | ]
i .
3 k4] iz - ki ! 3
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i
4 R Iy i 12 Fi 41
TN\ |Griic parabele % ) B3
i M\\
p it
R
5 R - hi i tn- 1)1
N\ Forabolg of the n—1 n+2 n+42
DL i) "
2hl I Hl
6 oo 272 & Sz i i
—'— g".{;mc 3 8 8
P ‘ " parabola
|

Table 3.8 gives the values of Mohr's integrals g M M,dx com-

puted for various graphs of different outline. This table will be
of considerable help in the computation of displacements.
Vereshchagin's method is particularly well fil for the compula-
tion of the deflections of beams and framed structurcs, the different
spans or members of which do not vary in their rigidity. Should
this rigidity vary along an element, the product EJ would have
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to remain under the inlegral sign which would make Vereshcha-
gin’s method inapplicable. 1t would then become necessary to cal-
culate analytically Mohr's integrals or, if an approximate solu-
tion were deemed sufficienl, all the members of the structure could
be fictitiously replaced by other ones whose rigidity would vary
by increments,

The deflections of hinged structures are computed using only
that term of Mohr's equation which takes into account the normal
stresses. It will be remembered that bending moments and shears
remain nil in all the members of this class of strunclures. Couse-
quently, Mohr’s formula reduces to

1

= Npdzr
mnﬁzgim E‘F

The integrals must be caleulated separately for the whole length
of each member of the siructure whereafter all of the values of Lhese
integrals must be summed up. In the great majority ol cases the
normal stresses N,. N,, the cross-sectional area F and Young's
modulus £ will remain constant wilthin the limits of each member
in which case the above expression becomes

i

NN NN
A =% ;F“§dx=2—;+'z (22.8)
Thus the computation of the deflections of trusses and similar
structures reduces to the summing up of the products Ng‘g"l calcu-

lated separately for each bar. These computations should be car-
ried out in tabular form.

9.8. EXAMPLES OF DISPLACEMENT COMPUTATION USING
VERESHCHAGIN'S METHOD

Problem 1. Required the deflection of point € of the beam appearing in
Fc}gf 19.8¢. Tho effect of hoth bending moments and shearsshould boe account-
e OFy: 13- oot e

Solution, The imaginary$tate of the hesm as well as the graphs of the stres-
ses induced by the load 2, and by the unit load 2, are represented in Fig. 10.86,
¢, d, ¢ and f. Using Vereshchagin's method we find

2 Pl L1 2 1 29 Py L 1 Pt | Pyl

bam=F7 % T T T ATGr 2 T T BEI T 4GF
This result coincides exactly with the one obtained in Art. 6.8 by direet
integration.

Problem 2. Required the horizontal displacement of point € of the portal
frame shown in Fig. 29.82. The moments of inertia of all the members of the
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frame are indicated in the same figure, Young’s modulus £ remaining constant,

throughout.
Solution. The hending moment

dingram corresponding to the aclual loading

is given in Fig. 20.8b. The imaginary loading cousists of one horizontal load
unity acting at peint €. Tho corresponding bending moumntrgm]ph is given
th

i Jp 7 2

J:g £
a 4
{Q‘J J/-;s 3//

X .—:; @ % &
T Graph due to
7 applied loods

T
®

: Graph due to unit

regetion
> fc) ’7;;
Fig. 29.8

in Fig. 29.8c. The signs o e bending
moments appearing in these graphs may be
omitted if desired for these graphs nre always
drawn on the sido of the extended fihres.
Tho displacement of point € will he obtained
by multiplying all the ordinates o the
hending moment graph corresponding to the

Af‘
= 2
\
L
[
1
I
I
[
|
[
I
]
1
]
NN

@)

rd ' 7
A |[|'||F’;"
{a)

Fig. 30.8

actual loading by the ovdinates 1o the graph due to the fictitious load unity.

Using Vereshchagin's method and

taking into account the diffierent rigidilies of

the colmnn and of the cross heam we find

1 2 1
3 EJ

Rl 2 i
2 t

i ) e

2 EJ,

Phy M_#P_"z(i - 1)
T TBET, 2T, T EL\3 I
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The displacement thus found wiil be negative for the M, aud M graphs are
situated on different sides of each member of the frame thus indicaling Lhat
the bending moments M, and M are ol oppoesite signs. Hence the actual displace-
rent of point € will occur in a direction opposite to the one adepted lor the
load unity, i.e., towards the right.

Problem 3. Required the deflection A, and the angular retation A, of the
heam with a built-in end appearing in Fig. 30.8a, these two displacements heing
due respectively to the application of a concentrated load P and of a moment
M. The bending moment graphs corresponding to the actual loading are indicat-
ed in Fig. 30.86.

Solution. Apply along the directions of the digplacements required a unit
load (Fig. 30.8¢) and a unit momoent (Fig. 30.8d) and trace the corresponding
bending moment disgrams (Fig. 30.8¢ and d). The deflections and angular rota-
tions will be computed using Mohr's formula together with Vereshchagin's
methed. The M, graph will be first multiplied by the M, graph and then by the
Mo graph.

1 12 0.51
Al;=ﬁ[0.5P£x0.c!x?xgxﬁ.5i+Tx
3
><{—2><0.3PEx0.5£+2><G.2Pl><I—O.SPIXI+D.2PI>cG.51)]=—3%r
g B 03PIx05Ix£—x1—02P1xﬂ5£x-1—><1)—i!2—
2—.@;(' Sl X g - 15X 5 x1 ) =mpy

)?thicm 4. Bequired the horizontal displacement of point D belonging to
the structure represented in Fig. 31.8a.

Solution. The bending moment graph corresponding to the actual loading
appears in Fig. 31.85. Let usapply a load unity along the direction of the dis-
placement reguired. The graph of the hending moments induced by this load
15 given in Tig. 31.8¢. Multiplying the two graphs one by another vsing Veresh-
chagin's method and remembering that the separate members of the structure
are of different rigidity, we obtain

qa
2

a_i_%
. .3.4

1
M= ;
. 1

w4
Y55 PR W 5 sk Yo
g 30 g et ) 1 e

x (2% a4 2 aTpa T 3 P70

The area of the M, graph pertaining to element €D is bounded by a con-
cave parabolic curve and therefore its area is equal to one third of the product
of its base length by the maximum ordinate, i.e.,

2
4 =
€ (sce Table 2.8). Tonco the corresponding ordinate to the 7 graph equals d—fk

The centroid of this graph is situated a distance — as measured from point
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Problem 5. Nequired the deflection A of a beam built in at its left extremity
and carrying a uniformly distributed load (Fig. 32.8a).

Solution. Having drawn the M, graph (Fig. 32.86) apply a vertical luad
unity at point € and draw the corresponding bending moment diagram
(Fig. 32.8¢). The value of the deflection Ap will be obtained multiplying the
ordinatos lo the parabolic graph by these of the one hounded by a straight line.
This operation may be carried out in two dillerent ways:

1. The M, graph for the lelt-hand part of the beam will be regarded as con-
sisting of a trapezoid 1-2-6-3-¢-1 with negative ordinates and a parabolic segment
2-6-3-5-2 with positive ordinates (Fig. 32.8b).

The maximum ordinate to the parabelic graph will equal

Iy2
3 (?) _ g
8§ 32
Multiplying the 3, graph by the M graph we oblain
1 [z I 142 gi2 1 g%\ g2 1 2 1 1 17414
e (3 ) ]

ST e 2T TR o oy

9. Isolate the left half of the beam replacing the action exerted by the right-

lf 7
hand part by & bending moment M =% and a shearing force @ = »—2—
(Fig. 32.8d). The graph of the bending moment M, acling across the sections
of the left-hand portion of the beam is shown in Fig. 32.8e.

As will be readily seen this graph and the graph 1-2-5-8-4-1 of Fig. 32.8b
are absolutely identical. [t can be subdivided into three parts as indicated
in Fig. 32.8¢, ench of these parts represenling respectively:

: ; 1 "
{a) a rectangular graph having for ordinate "’—8- due to the bending moment

Lg— ;
M= —S—applmd to section C;
(h) @ triangular graph due to the shearing force @ = ?Tlequal]y applied to

2
seetion €. The maximum ordinate to this graph equals %:
(¢) a paraholic graph due to the uniformly distribuled foads app;ic{l to the
loft half of the beam. The maximum ordinate to this graph totals %— i

Multiplying each of these three graphs by the bending moment graph due
to the load unily we obtain

1 (?E,i.i il et L 2 B M
I T T N T T TN T AT

‘F: Problem 6. Required the deflection of tho structure appearing in Fig. 33.8¢
at load point. The left end of the horizontal bar is hinge-supported while its
right extremity is suspended to a flexible wire. The moment of inertia of the
beam cquals J, the cross section of the wire F, Young's modulus of the material
of both heing E.

Solution. Tn the structure under consideration the boam will work only in
bending and the wire in direct tension. Hence Mohr's formula for the heam will
reduce to one term which contains the product of bending moments. For the wire
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Mohr's formula will consist of the term containing normal stresses. Tho total
displacement of the load point will be therefore given by

i [

M pﬂ_&' dx N,Nda
Aw= -
2 S EJ S EF

Let us apply to the beam a unit load acting along the direction of the
displacement required. Tho corresponding hending moment graph appears in

a4 J )
I ol
s

Fig. 33.8

Fig. 33.8b. Computing the first term of the expression given above by Vereshcha-
gin's method we obtain

I —
MoMds | ¢4 Py IYR 1 _ PP

S BT —E.r'( '"“"‘) ;

0

3 4 4BEJ

The total“tensile stresses N, and ¥ in this hanger due to load # and to the
unit lead will amount to -ig- and PR respectively. The corresponding graphs
are given in Fig. 23.8¢ amnd b. The multiplication of these graphs gives

§Np dz p 4 § pa
0
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The total deflection will be given hy

Pl3 Pa
A=rsE7 t7EF

Problem 7. Required the augular rotation of cross section A g of the three-
hingod frame appearing in Fig. 34.8a. The flexural rigidily EJ of all the ele-
ments of this frame remains constant and cqual to 25 x 104 Lons sg m.

g=itjm

4m
Sigiviirariit

[

fid (&)
Fig. 34.8

Solution. The roactions at the supports of this frame will bo derived from
the nsual equilibrivm equations (Fig. 34.86).

4 4
SMo=Ta X 4=V A X 15—q X A X = iH 4= 1.5V (=2 X b X 5-=0

2

wherefrom

AN 4 =15V 4 =16 (a)

SM s — I o X 2=V %3+q% 4 (-g-—-l-ﬁ—d)=—-2HA-—3VA+2X.4></..-=0
wherefrom

2H 4 +3V, =32 (b)

EY————VA+VB=G {c)

2X= —JHA—-_H'B—l'"qX b=—H, —Hp+2x% 4=0

wherelrom

Hp=8—H, (0

From equations (a) and () we obtain V4 = 6.4 tons and M, = 6.4 tons.
Equation (¢) gives Vi = 6.4 tons and equation {d) gives H p = 1.6 tons.

Knowing Lhese reaclions we can draw the bonding moment diagram appearin
in Fig. 34.85. This being done, let us apply & unit moment at section 77 which
will turn this section in the direction of the angular rotation required.

23—853
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The reaction at the supports induced by this action will be ebtained as follows

(1
(g)

EMom=H X i—V,x1.5=0
I
(h)

EMp=—H % 2—V,4X3+1=0
Y ==V, +Vp=0

PR i =)
4 1
= md Hy = —

(Fig. 34.8¢):

10 while equations (g} and (h)

Equations (e} and (f) yield V
BT
give Vp — 1z un B=15"
Knowing these reactions we may draw the bending moment graph due to

the unit moment (Fig. 34.8¢).
p=15t

4
FP=15¢
S

peist

i
Fig. 35.8

The value of the angular rotation will he obtained multiplying the first of

tao graphs obtained as descvibed above by the second one
2 axdxz 1. 2
Sl

(

1 .0 % 4 2 2
'-‘"=;fz_f[ RN R S
96x45 2 32 96x6 (2 2 1
xgxgx2=g= (rgtyxi)]=
31,4 2"“) =1.13 % 10-* radians

2
1
TIE 0t
Problem 8. Required the vertieal deflection Ag of joint 7 of a steel truss rep-
resented in Fig. 35.8z, The c¢ross sections of all the members of this truss remain

76.8 | 32
[ 5ts 15
constant and equal lo F = 125 sq em und Young’s modulus Z = 2 X 108

a5 715

«

kg/!sq cm.
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Solution. The deflection Ay will be given by the expression
NN
E¥F

All the necessary computations are tahulated hereunder (sce Table 4.8),
The entries in the fast column of this table give the values of the product
Np N1 for each bar in ton metres. Summing up all these entries and dividing the
tntal by £F we shall obtain the displacement required

1

I

A5’=E

5 T e (156.25 % 2104, 2 -+ N=
As ZXw?XQ_mzs(laB.Eﬁx L0E 1T 2480 490 ¢ 1)
=372 % 10" m=3.72 mm
Table 4.8
Stresses due Lo ‘
= Bar lengt! ) Npihi
Bar No. e "E‘I:;Jf{';;.l- fong nnlty ln;j:xt:i:'es
tons N

1-2; 6-8 5 -37.5 —0.833 156.25
2-d; -6 b —25 —10.833 104,17
1-3; 3-4 4 30 0.667 80
37 T8
2-8; 67 3 i i 0
2-6; §-6 5 —12.5 ] (]
4-5 6 i5 i 90

10.8. STRAIN ENERGY METIOD OF DISPLACEMENT
COMPUTATION

The strain energy method of displacement computation is based
on Castilliano's theorem which states thal the partiel derivative of
the strain energy in lerms of the unit action is equal to the displdce-
ment induced by the actual loading along the direction of the said
unit action.

In order to simplify the demonsiration of this theorem we shall
relain in Moht's formula only one term which contains the bending
moments (see Art. 3.8)

1
_ v M2dx
_W—L§W

234
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Let us express the bending moment as follows
M =M\Py+MoPyt ...+ MuPrA- ..+ MoPa

In this expression M;, My, - .., My, ..., M, are the bending
moments due to unit forces Py =1, Po =1, ..., Pp=1, P, =1
whose lines of aclion coincide with those of the corresponding ap-
plied loads.

The partial derivalive of W in terms of Py will be

! M M

i
aw 8 M2dzy ary
GPy T oy (ES 2EJ )_ES EJ
U Ll

=
M = W o MpMax
hUtEﬂ’_k'_M" and consequently e ES —5F
0

As shown in Art. 6.8, the right-hand part ol this expression
represents Ay, and Lherefore

aw
T?H =M P

Tn actual design practice Castilliano's theorem is seldomly used,
its inlerest being mainly theovetic. If it were desired however to
use il the sequence of operations would be as follows:

1. A certain action shonld be applied Lo the system under con-
sideration along the direction of the displacemenl required.

2, The strain cnergy due to the actual loading and to this unit
action should be caleulated.

3. The expression of the sltrain encrgy should be differentiated
in terns of Lhe said unit action, The magnitude of the displacement
will be then obtained from this expression reducing to zero Lhe
magnilude of the unit action for in reality this acltion is nonexistent.

In the particular case when one of the load points coincides with
the cross section the deffection of which is sought, it will be the
value of this particular load that will be introduced into the par-
tial derivalive.

Problem. Required the angular rolation of the free end of a unilormly loaded
beam with a bailt-in end (Fig. 36.8a).

Solution. Let us apply to the free end of the beamn a couple M as shown
in Fig. 36.85. The value of the bending moment at a cross section siluated a dis-
tance o from the feee end will be given by

M:——(q%—i—‘m)
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Tho corresponding strain energy will amount to
2 2
i W )
“"'Sm“*% (q R Sa
T 2ET
0 ]

whieh gives after inlegration

1 ggis I3 9N
Wy (E 5 +"2_)

Differentiating W in terms of R and reducing thereafler 1is value to zero
we obtain
aw 1 fqis g
= (ay )mnn=ﬁ7 (-6‘"}' g"m) =L
As already stated, when one of the loads is actually applied at the point

the displacement of which is desired to determine there is no need to apply imag-
inary loads. Assume, for instance, that it is reguired to determine the maximum

ISIRIRINR 7
e = S
(a) T
7 A4
IR )
(0} —
Fig, 36.8

deflection of a beam bhuilt in at one end and carrying a concentrated load at
the other. In that case

M= —Pr

L
. ¢ Pur,  pas
i § 2T SRy

LA
T aP BEJ

11.8. THE ELASTIC LOADS METHOD

The method deseribed hereunder permits the determinalion of
deflections and angular rotations at a certain number of igolated
points of the structure. Increasing their number, the elastic curve
of the deflected system will be obtained with a precision inercasing
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in direct proportion to the number ol points considered. The curve
so obtained might be also termed the displacement graph ol the
sysbemn,

Indeed. il the values of the dellections determined at a certain
number of points were set out along the verticals passing through
these points, the broken line connecting the ordinates so obtained
would constitute an approximalion of the elaslic corve, The deflec-
Lions of all the intermediale points might be oblained with a cer-
tain degree of approximation by meaguring the ordinates to this

Yo . I Yot
vert.om displocements gragh

Fig. 374

broken line, for in reality the elastic line of a member will be a
smooth curve. The above does not apply to hinged straclures such
as trusses, for as long as the loads act at the joints all the bars
remain straight and consequently the deformed axis of the lower
{or upper) chord will lollow a broken line connecting Lhe deflected
joints. TC the axis of the displacement graph is normal to the direc-
tion of the deflections, such a graph will resemble very closely
a bending moment cueve of an end-supported beam acted upon by
several coneentrated loads. It is this resemblance which forms the
basis of the method described hereunder.

Fig. 37.8 represents a part of some structure for which it is re-
gquired lo find the defjecltions al a cerlain number of points. Assune
that the broken line of Fig. 38.8az represents the bending moment
graph. Each apex of this graph will lie in the vertical passing
Lhrough one of the load points. Let us find the magnitudes of these
loads. For Lhis purpose we shall compute the shearing forces ¢,
and Q.. acting al Lhe extremilies of the stretches A, and %, 4.
Using the Lheorem of Zhuravsky we may wrile

0= Ma—Mn_y . _ Mp— My
i 3‘“ L] ntt — Kru--l
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Lot us pass two sections through the beam one immediately to
the right and the other immediately Lo the left of point n. The
element isolated by these two seclions is represented in Fig. 38.8b.
The end faces of this element are acted upon by the shearing forces

“sz Fret ‘ Fa '”’81‘: Frez

‘ Asref A Aper | Aneg
-1 n 11+l n+2

W,

(@
)

W

2, Ma-1 ) My
- Bending mament graph
()] At

Fig. 38.8

Q, and O,.. reckoned positive. Projecting all the forces applied
to this element on a vertical we obtain

2Y=Qn—Pn""Qn+l =0

wherefrom
Pn T Qn_ Oru-j

The latter expression shows that the load acting at point n 1s
equal to the difference between the shearing forces Q, and Gt
1t is clear thercfore that the concentrated loads acting at points
{n 4 1) and (r — 1) will also amount to

Pu-i = Qn—i "_Qn
Popy= Qn+| T an

Introducing into these expressions the values of the shearing
forces in terms of the bending moments we obtain

; Mp— M Mpys—M 1
#] - n n—l_ i L R .3
P An At M-y hn +
1 1% 1 ‘
+4- M, (Tn+ i;;) —-Mm-im (23.8)

It follows Lhat if the beam is subjected to the action of the con-
centrated loads P, calculated as above, its bending moment graph
will coincide exactly with the doflection graph of the structure
under consideration. Since the two curves given in Figs. 37.8 and
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38.8a are identical, let us replace in the expression of P, the val-
ues of M,_y, M, and M, by the corresponding deflections y,_,,
Yn A0d Y4y

We shall thus obtain the expression of the so-called elastic loads
W, which will induce in an end-supported beam a bending wmo-
ment curve coinciding with the approximate deflection graph of
the actual structure. The value of these elastic loads will be thus
given by

i : [ $ 5 .9 1 f
Wa= Y1 (—ETL—M_:) —Yni1— (24.8)

At dirst sight Lhis expression appears thoroughly unfit for prac-
tical use. I[ndced the values of the elastic loads given by this
expression depend on the unknown
deflections.

However, it is possible to oblain an
expression of the elastic loads in terms
of the external forces acting on the
structure. The procedure is as follows.
Let us designate by the lerm actual state
the state of the structure characterized
by the actual or existing loading and
let us apply at points (n — 1), n and
(n + 1) two couples both equal to unity
but of opposite sign. Let us assume alsoe
that each of thesc couples is constiluted
by two wvertical {forces amounting to

for the

Fig. 9.8 L for the first one and to

n
second.
The corresponding stale of the structuce (Fig. 39.84) will be
designated by the term imaginary state. Taking up expression
(24.8) we nole that its right-hand part represenls the work per~
formed by the imaginary loads along the deflections caused by the
actual ones.

7‘:1,1

Indeed, the product of the vertical load % acting at poinl (n — 1)

by the dellection y,-, (Fig. 39.8¢ and b) rﬂi;ra%ents the work accom-

plished by this load along the deflection of this point caused by

the actual loading. The negative value of this term is due to the

faclt that Lhe force —;— is divected upwards whilgt the deflection of
n

point (n — 1) is directed downwards. Similarly, the product

Yn (—1—-—|——i—~) represents the work produced by the forces L and
Lﬂ }'TI-H xi’l

of the imaginary state acting at point n along the deflection

a'i'i. +1
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i, due to the aclnal loads. The third term of expression (24.8) s
again equal to the work performed by the force % along the deflec-

T
tion Y,+1, the minus sign showing that the dire&ions of the force
and of this defleclion are directly opposed.

Let us now express the work accomplished by the forces which
form the imaginary couples along the actual displacements in
terms of the stresses M, N and @ induced by these unit couples
and of the stresses M,, N, and @, due to the applied loads. Using
expression (12.8) we may ’ write

1 1
.Un—H (3‘:; Fm) yn—j\—“'!lnﬂ:
! i
— M, dx N, dz -
=3{M—%; +ESN nESQ
0
and consequently
! !
, d Ny d -
w,,=>:§MJ Srr (VL (02 (259
0 0 b

This latter expression constitutes the general equation giving
the elastic loads in torms of the internal stresses. When used for
the computation of deflections of beams and rigid frames, this
expression is considerably simplified as only the term containing
the bending moments must be relained. In the case of flat arches,
the normal stresses must be also accounted for, while the shearing
forces are taken into consideration only in a few particular cases.
The dellections of Lrusses and other hinge-connected structures are
computed using only the term containing direct stresses.

The values of the elastic loads correspouding to different poinls
ol the structure are obtained through the application of imaginary
unit couples successively to two neighbouring elements of the
struclure, Once the values of these elastic loads are known, the
defleclions are readily calculated using the following procedure.
The loads just mentioned are applied to an imaginary beam of
appropriate length and rigidity and the bending mement curve
is drawn in the usual way. The ordinates to this enrve will be no-
merically equal to the deflections required. The choice of the beam
mentioned above is governed by the following considerations:

1. To each point of the real strueture which remains fixed there
must correspond a point in the beam where the bending moment
induced by the elastic loads is nil. On the other hand, to any de-
flected point of Lhe structure there must correspond a cross seclion
of the beam where the bending moment differs from zero.



362 Strain Encrgy Theory and Methods of Displacement Computation

2. Wherever the slope of the deflected axis of the real structure
varies or, in other words, wherever two adjacent cross sections of
the beam rotate one with reference to the other, the corresponding
cross sections of the imaginary beam must be acted upon by shear-
ing forces induced by the clastic loads.

Thus, in the case of a beam built in at one of its ends (Yo =20
and @, = 1) and free at the other end (y, == 0, @, == 0) we must
have in the imaginary beam

Mz=0 and Q;=0

At Lhe other ond of the imaginary beam the values of Lhe bend-

ing moment M} and of the shearing force Qf must be on the con-
trary differenl from zero,

Table 5.8 contains the schematic drawings of conjugate imagi-
nary heams corresponding to the struclures represented in the left-
hand column.

Table 5.8

No. ‘ Real structure Imaginary beam

The following sequence should be adopted lor the conslruction
of the displacement graphs using the method under consideration:

1. Begin with the delermination of the A,, N, and @, graphs
induced in the real structure by Lhe actual Joading,

2. Choose such points of the structure whoso deflections will
be characteristic for the structure as a whole.

3. Apply successively to ihe adjacent poinfs chosen as above
two unit couples, the direction of forces constituting these couples
being parallel to those of the defllections required.
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4. Draw the M, N and @ graphs induced by Lhe said unit couples
(Fig. 39.8).

9. Compnte the values of the elastic loads cither by direcl inte-
gration or using Vercshchagin's method described previously.

6. Choose an imaginary beam in conformity with the character

of the deformations of the real struclare.
7. Trace the diagrams of the bending moments induced in this
beam by the clastic loads. These loads will be reckowed positive
when they are of Lhe same direction as the adjacent forces forming
two nevighbouring unit couples and the bending moment graph will
be always traced on the side of the extended fibres.

The ordinates to the bending moment diagram thus obtained
will be equal both in amount and in direction to the deflections of
the real slructure.

The elastic loads acting on the imaginary beam al its supports
have no influence on the corresponding bending moment graph
and thercfore their computation becomes unnecessary.

12.8. SIMPLIFIED EXPRESSION OF ELASTIC LOADS FOR
BEAMS AND R1GID FRAMES

The determination of the deflection line for solid web structnral
members is carried out by subdividing the total length of such
members in a series of short stretches, for which il may be admitted
that the unit stresses remain constant.

Let wus consider Lwo adjacent siretches meeting at point n
(Fig. 40.8¢). The bhending moment curves due to the applied loads
are as usual drawn on the side of the extended fibres. Normal
stresses are considered constant and positive within the boundaries
of ench stretch,

In order 1o find the elastic load W, let us apply to the system two

couples consisting ol vertical forces -%ﬂ and ;— (Fig. 40.8b). Inci-
" a

3 maq
dentally this means that the elastic load will be also directed ver-
Llically, The direction in which each of the two couples Lends 1o
rotate Lhe corresponding stretch must produce an extension in the
member on Lhe same side as produced by the actnal loading. The
forces constituting these unit couples will lead to the appearance
in each stretch of normal forces equal to:
(1) within the stretch between points (r — 1) and »
N,= —-f;— sin fi,

where

J\'l'xzsn wsﬁn
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and consequently
o= sinffn__ tan P,
o SncosBy Sy
{2) within the stretch between points n and (n-}-1)

b
Nypy =57 8in By

Anii
where
Mrss = Sni1 008 By
wherefrom
K., —. S Prsy __tanPn.
it Snr1 €08 Pryy Snyt

The multiplication of the bending moment graph due io the
actual loading (Fig. 40.82) by the bending moment graph due to

Actual state

5n {

\
W0\

M,
Mp-1 v

Imaginary state

the unit couples (Fig. 40.8b) carried out by Vereshchagin’s method

provides the following expression for the elastic loads
L]

3 —_dr S &h ¢
wi—=x S MM 55 =g (Mama+ 2Ma) -+ G555 (2M - M) (26.8)
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The above cxpression accounts only for beunding momenls.
In order to take care of the normal stresses Jet us compute the
value of the integral

&
N_ =dr _ tanBy NpSp | taufn.y
Wi =2 (NN g = =0 Pt g et x
qu-ian-i _— Np Nnﬂ 4 .
R il s T Pasy =

= —g,tan ﬁn -+ Eupq tan ﬁn-.—i
In this expression e, and #,4+5 are the unit strains of elements
S, and 8,4, cavsed by the normal forces N, and N4y

Thus, the total value of the elastic load taking into account
both bending moments and normal stresses will be given by

Ay = S 2 N
W = 55— (Mot - 28} gtie (2M ot M) — = tam B +

N -
4 E}:::l tan Py (27.8)

T will be observed that it is much casicr to computé the elas-
tic load using expression (27.8) as it becomes possible to dispense
with a number of intermedinte operations. Thus, there will be
no longer any need to apply to the structure the unit couples, to
trace the diagrams of the corresponding stresses and to carry out
the multiplication of the graphs due to the actual loading and lo
the said unit couples.

The elastic Joad computed as just described will have the same
direction as the adjacent forces of two meighbouring unit couples
as long as the valuc of this load remains positive. If the normal
stresses may he neglected and provided the bending moment graph
due Lo the actual loading does not change sign within the lenglh
of elemenls S, and 8,4, the clastic load W, will be direcled
towards the bending moment curve.

Problem. Required the deflection line of the cantilever heam of Fig. 41.8
supporting at its free end u concentrated load P.

Selution. Subdivide the beam in two equal parts choosing points @, 7 and 2
at the ends of those parls. 'Frace the bending moment graph due to the actual
loading on the side of the extended fibres. Using expression (26.8) determine the
magnitude of the elastic loads at points ¢ and 7. 1t will serve no useful purpose to
determine the elastic load at point 2, this load having no influence on LEe stresses
in the imaginary hoam. In computing the magnitude of the elastic load at point
ftit is assumed that the built-in end is replaced by a stretch of infinite rigidity.

1 R ) .
Wo =0 (M, 2Mg) Lk (23, | M) =%tﬂ_1| aMot

CEJ, BES,
1 Pi 2Pz
+157 (2” ?) BT
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T'he olastic load corresponding to point 7 will bo

; i s 5 Pl
V) = — _-H—I-—r - M+ M ——a— 98—
L G, (M, 2'WI}+GE12 (2M,+ M) =—7p5 (PH) 3 )+
l Pl Pz
T (z_+o) -
1207 2 BT

The values of the elastic leads being calculated, apply these two loads at
peints & and 7 of the imaginary beam built in at its right-hand extremity
(Fig. 42.8) and construct the correspending bending moment diagram. Tho
ordinates of this diagram will be reckoned pusitive when sitnated on the side

W 7

Fars

£
s

Fig. 12.8

of the extended fibres. The elastic leads are directed upwards, in other words,
towards the bending moment curve due to the actual loading, and therefore
the bending moments at points @, 7 and 2 of the imaginary beam will have the
following values

: 5P13 .  S— Pi3
Jfﬁ——-(); .1'Ji=H’0?-1~==“Z8!T; M@zHOH-Wi “E 4“‘!2X0=m—

The graph of the bending moments induced in the imaginary bheam by the
elastic loads is given in Fig. 42.8. It represents at the same time the deflection
graph of the real beam. At points 0, 7 and 2 the deflections of the real heam will
coincide exactly with the defleclions represented by the ordinates to the above
graph, whilst at intermediate points tﬁerc will he a slight difference between
the two. ITf the real beam were subdivided into a grealer number of parts, the
dellection curve of this beam would have been obiained with greater preeision,

13.8. SIMPLIFIED EXPRESSION OF ELASTIC LOADS FOR
HINGE-CONNECTED STRUCTURES

When applied to hinge-connected slructures expression (25.8)
hecomes

. s
Wy=ZN —7 = 2NAl, (28.8)

In this expression NV represents the normal stress due to the unit
couples applied to Lhe bars meeting at the joint 2 for which the
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value of Lhe elastic load is sought, while Al, represents the (otal
strain of these bars caused by the actual loading. The application
of the elastic loads method Lo Lhe deflection computation for a truss
is illustraled in the following example.

Let us assume that it is required Lo determine the defleclion
line of the lower chord of a truss represented in Fig. 43.8z. The
truss is acled upon by a single vertical load P =1 ton acling at
joint & and directed upwards. The cross sections of all the members
of the truss aro the same. Let us compute the values of the elastic

7 20 Qu 4' _ti’

Fig. 43.8

loads which must be applied to the imaginary beam at points cor-
responding to joints I, 2, 3, 4 and 5 of the Jower chord. For thig
purpose let us apply unit couples successively to each two bars
of the lower chord meeting at a joint.

If it were desired to find the deflection line of the upper chord
the unit couples should be applied to the bars of this chord. Simi-
tarly, the construclion o a displacement graph for points situated
along the broken line 0-1°-2-3"-4-5’-6 would necessitate the deter-
mination of the elaslic loads acting at joints 1, 2, 8, 4 and 5'.

Let us proceed with the determination of elastic load W,. Inci-
dentally, this load represents the angular rotation of bar 0-7 with
reference to bar 7-2. In order Lo find the magnitude of this load
let us apply to bars 0-f and 7-2 unit couples consisting of forces

7=—;— (Fig. 43.8b) and compute the normal slresses induced in
the bars by these couples. It is readily seen that all the bars excep-
ting bars 0-1, 0-7', 1’2, 1I-2 and -1’ will remain idle. The reaclions

at the ends ol the truss will alse remain nil. Stresses in the loaded
bars are given in Table 6.8.
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Table 6.8
Bar No. Tatal stress Bar No. ,I Total slress
; 1 4 2
0-1 =7 1-2 +55
1 : 2
1-2 ~q 1-1 e
5 5
0-1 +ﬁ ﬁ

Stresses in all the members of the truss due to the applicalion
of the load P are given in Table 7.8. This table contains also all
the necessary infurmation rogarding the length and the cross-section-
al areas of the bars.

Table 7.8
Loy h Cros 4 3
Bar No. or(‘?jgatr, secit;?n, Stress,l  par No, E‘fﬁﬁh sgé"?i%;. Stress,
m 30 m tons m sg m tons
0-1; 58 3 F —% i“i 3 ¢ rf’-
s 3 Vi o : .
1-2; 1-6 3 P = 28 3 5 Foo|eg
0-1'; 56 5 P +-‘;— 2.3; 34 3 P _%
B 51 3-8, 4 F —_1
f.'! . -4 s >
1-8; 45 5 F 5110 55 4 7 0
b SO " 3| 2-2'; 24 4 ¥ 0
;. ; h
-5’ : & "4

The data contained in these two tables permits the computation
of Lthe eclastic load W,

L 1, = o -
W =ZENNy 7= 57 (VoVorlor + N 2N olie + Vo NorNoy- +

i r L AT - 1 a ”
LN aNpplpg+ Ny Neprdyyr = ﬁ [ e ( - ?) X 34+ ( —%) >

x(—%)x:ﬂ+%x%x5-+%(-—%)x5+(—%)x
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Since the system is completely symmetrical, elastic load W,
will have the same value
Wy=W,= 4+
YT GER

The value of Lhe elastic load acling at joint 2 will he obtained
applying the unit couples to bars 7-2 and 2-3 (Fig. 44.84).

7 R S A

Fig. 44.8

In Lhis case slresses will be developed in bhars 717-2°, 2°-%3', 1"-2,
2-8". I-1" and 3-8, all the other bars remaining idle.
The values of these slresses are given in Table 8.8.

Table 8.8

Bar No. Slress Bar No. Stress Har No. Strous

' 5 gige 1 q 1
B -3 |2 +z |12 +
1 ] 1

oy il R, -3 mmne g 3-3 gEres
I-2 } 7 2-3 5 3 7

All the computations relative to elastic load W, are carried out
in Table 9.8 nsing data contained in Tables 7.8 and 8.8.
‘The final value of W, will be obtained by summing up all the

Th—RLY
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Table 8.8
_— Stresses N
Stre N o B NN T
Bar Nu. ‘f{f mdﬁ?ﬁsby mt;:;:glhy : L
unit couples Joading EF
" 5 ] 5 125
Pl EF 1z =g TOGEF
" 3 1 3 oy b
T EF T% T 16EF
.8 4 L 3 e 28
a IF g +7 | T
- 5 5 53 125
&l EF -5 +5 | ~mEr
ygr 4 4 _ 4
. IF 5 =4 SEF

entries of Lhe last column of Table 9.8
5
Ws=—z5F
Owing to the symmetry of the system, the elastic load W, will
have the same value. Negalive values of these two loads indicate
that the mutual rotation of bars /-2 and 2-% occurs in a direction
opposite to the onc of the unit couples. In other words, bar /-2
will rotate clockwise with respect to bar 2-3.

Table 10.8

) Stresses v T
| | 308 Y|
loading

-

2.3 7?}7 +% _|_% u:-,;-jp

r a _%

- I)! _F% B ;_ * !!tliEf-'
. : :

2-3 % N 71: _‘% \ ::}%
; : i 27

. G ﬂ'JT' ~8 +mEr
4 9 ;

-8 ﬁ . 4 ot
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Tt remains lo find the value of the last elastic load W.,. To this
end let uvs apply unit couples 1o bars 2-3 and 3-4 (Fig. 44.8b) re-
pealing all the computations in the same order as heretolore. These
computations appear in the appropriate colummns of Table 10.8.

Adding up all the entries of the last column of this table we
obtain
167

Wa=-iz7

Elastic loads Wy, W, and W; being positive, these loads will
be directed upwards, that is in the same direction as the adjacent

(o) Actual s tracture
i ’ ? r 3 r 9 r’ .,’ ’

2
P=1

(b} imaginaryy beum
W W lws W,
b7 4 il

@M graph 4, %r
iGEF e

il i

FE I I i
i ME My Mg

2EF, q
M

[

Fig. 45.8

forces of neighbouring unit couples. The negative elastic loads W,
and W, will be direeted downwards.

The conjugate imaginary beam corresponding Lo Lhe truss under
considerntion appears in Fig. 45.8b. |t represents a Jiorizontal
end-supported beam carrying & symmetrical loads. The abutment
reaclions produced by these loads will be directed downwards and
will amount to

ot L1 ¢9 5 167 5,8 23
A =B =5X35 (E_ﬂ"" 7% “E?ﬂ""lﬁ)_ AT

The deflection line of the lower chord will be given by the values
of the bhending moments at the point of application of the elastic

24*
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loads to this imaginary beam

T T 23 23
ﬂflzy'].:Ms:yf:ﬂ_'ﬁEF ><3=_2EF
! T 23 . 4 3
My=ye=M, =y, = — 7 ¥ - 4557 ¥ 3= —1ezr
I 3 9 5 127
M, =y = —gpp X O mpr X S—gmr X 3= —F

These dala heing obtained, we may Lrace the diagram ol the bend-
ing mowmenl produced by the elastic loads. The ordinales to Uhis
diagram plotted on the side of extended fibres will correspond
exactly both in amount and direction to Lhose of the lower chord
deflection Vine of the truss. The load being direcled upwards, all
the joints of the lower ¢hord will deflect in the same direction. All
the above computations may be checked by determining with Lhe
aid of Mohe's formula the deflection of joint 3 induced by the appli-
eation of Lhe verlical load P =1 ton. The value of this deflection
will he given by

N, Ny

Apo ™ T = FF
N being numerically equal in this particular case io N, for Lhe
load P itsell equals 1 ton. ALl the data necessary for these computa-
tions will be found in Table 7.8 given above
1 I 5VE e p. (B2
Ajlj}-'_—- 6;;31 =‘ﬁ [(?) W 3K f’l-{'— [?) N 5 b [§3 -+ (__G_) r
¢ Oy 2 1
= = ) 2 bt 5
><3><4+[8) x3x2+1 xé]_ 7 <
o VOB 750448 |- 4854266 127

(4 " ALF

It is seen thal the dellection of poinl & compuled by the method
of elastic loads is exactly the same as that computed using Molir’s
formula.

14.8. DEFORMATIONS OF STATICALLY DETERMINATE
STRUCTURES CAUSED BY THE MOVEMENT OF SUPPORTS

No gtresses result from a displacement of one or more supporls
of a statically determinale struclure provided Lhe supports travel
along the direction of the corresponding reactions.

Let us examine, for instance, the frame of Fig. 46.8. Assume that
the right-hand support selties vertically an amount A due to under-
mining or any other cause. Sueh a settlement will produce no bhend-
ing moments or normal stresses in the members of the structurc.
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In order to determine the displacement ol point £ along Lhe direc-
tion i-i imagine that a unit load X; = 1 acts on the crossheam al
point % along the direction of the displacement required (Fig. 47.8).
Let 12 be the reaction cansed by Lhis unit load at the supporl which
has seltled.

For the Lwo states represented in Figs. 46.8 and 47.8 in one of
which (the actnal state) the structure careies no load al all, we may

lmaginary stote
Avtual state ¢ i

b i : 4
i = \ \i T
/ Kﬁ( Y Xi=t
/ A
i \
i cEN
A 8
= e
R
Fig, 46.8 Fig, 47.8

write on Lhe hasis of Maxwell’s theorem of reciprocal works that

XAy —RBA=0
and, since X =1
1A;s—RA=0
and, consequently
Njg=RA
meaning thal the displacement at any point of the statically deter-
minate system caused by the settlement (or any other movement)
of a support is equal lo the produet of the amount of this seltle-
menl by the reaction R at the corresponding support induced by
a unil load acting along Lhe direction of the displacement studied.
This displacement will be reckoned positive when the directions
ol reaction R and of the digplacement A are opposed and negative
when their direclions coincide.
The same result could be obtained from ihe strain energy equa-
tion
1. 1 ;
?Xiaii‘l‘xfﬂu.‘"‘ﬂ-‘—\=?xibﬂ

The left part of this equalion represenls the work accomplished
by all the exlernal [orces (reactions included) acling on the siati-
cally determinate system of Fig. 48.8¢ in case lhe settlement of
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support B takes place after the application of the load unity X,
and the right part of the same equalion represenis the work pro-
duced by these same forces in case the seltlement would reach its
final value before the application of this load (Fig. 48.85). The two

r
|
|
I
|
|
I
|

Fig. 48.8

parts of this equation must have exactly the same value becausc
in both cases the total deformation of the system remains the same.
It follows that the strain energy accumulated in the first case (re-
presented by the left part of the equation) must be exactly the same

(a) Actual stote
\ =

b g =

D “VYag

i i 05!:;

(b) Imaginary state
= 861, i Xp=1
|
3

s -

Fig. 49.8

as the strain energy acquired by the structure in the second case
and represented by the right-hand part of the equation. As &; =1,
this equalion leads immediately o

.i\m ‘—‘—.H&
which coincides with the result oblained on the basis of Lhe theo-
rem of reciprocal works.

Let ns take up a beam provided with an inlcrmediate hinge as
represented in Fig. 49.8a. It is required to determine the vertical



74.8. Deformation of Statically Determinate Struciures 375

displacement A, of point C of this beam when the fixed end is
rotated through the angle A,. This may be done applying a unit
load X; =1 al point € (Fig. 49.86). On the basis ol Maxwell's
theorem we may write

X,'.ﬁu-[—o.5hﬂ¢=0
wherefrom

13,4+ 0.5L,8, =0

Ay= —0.51A,

The negative value obtained for the displacement indicates that
point € will shift upwaeds in a direclion opposite to the ono adopted
for the unit load X;.

Let us consider now the more general case when several support

constraints of a slatically determinate structure yield simulta-
neously. As an example, we shall study the frame appearing in

fa) Actual state (&) Imaginary stute
n fof

Fig. 50.8

Fig. 50.8a. The delormations of this frame are due to a horizontal
displacement and a vertical settlement of the right-hand support,
at the outcome of which the system will occupy the position indi-
cated in dotled lines.

In order to find the angular rotation of joint £ let us apply at
this point a unit moment X; acting in the direction of the rotation
required (Fig. 50.8b). At the right-hand support this unit moment
will give rise to a reaction whose vertical component R, will be

equal to % and the horizontal one R, to zlfz Equating the work

accomplished by the external forces in the case of the actual displace-
menl (Fig. 50.82) and in the imaginary one (Fig. 50.8b) we obtain

Xi\ia—Ria+Rb=10
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and, since X;=1
ﬁ{¢=R1a—Rgb
Introducing in this expression the values of reactions R, and R,
we find

a b
Au=7—z5

=

Thus, in order to determine Lhe displacements induced al any
point of a statically determinale structure by the movement ol ils
supports (lhese supports being shifted along the diveclions of the
existing constrainis) we must:

1. Choose an imaginary stale of Lhe structure for which the sup-
port in question remains fized.

2. Apply to the structure a unit action X; =1 coinciding in
direclion with the displacement required.

3. Determine the reactions produced by lhe said wunit aclion
along those ol the constraints which remaining slalionary in the
imaginary state yield in the aclual one.

4. Form an equation expressing that the work accomplished by
the loads and reactions of the imaginary state along the displace-
ments of the real one equals zero.

0. Oblain the value of the displacement required solving the
aforesaid equalion.

15.8. DEFORMATIONS OF A KINEMATIC CHAIN CAUSED BY
THE MUTUAL ROTATION OF TWO NEIGHBOURING LINKS

Hereunder the term kinematic chain shall apply to any system
congisting of a number of hinge-connecled rectilinear elemenls,
formiong a broken line.

Let us examine the displacement of any peint € of such a syslem
along the direction i-i when the angle formed by two neighbouring
links n — 1, r and n, n + 1 is modified (Fig. 51.8). Assume that
this angle has changed an amount Ag, and that the part of the
system situated to the left of joinl » remains fixed. The angular
rotation Awg, will cause a displacement of point € which will occu-
Py a new posilion . It is clear that the angle C'nC will be equal
lo A, and since the rotation is supposed to be very small, Lhe
circular are CC’ may be replaced by the normal to nC.

Let A; be the projection of CC’ on the direction i-i and y Lhe
angle formed by line nC wilh Cd normal to i-i (Fig. 51.8}. The sim-
ilarity of triangles CC'C, and CnC’ yields

C'Cy=7M=C"Ccosy=nCAgp,cosy
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As

n’cosy=Cd=r

we obtain finally
A= .‘_\lpnf

Thus, the displacement A; of any point of the system prodaced
by a change of angle ¢, by an amount Ag, is equal to the producl of

Fig, 51.8

Ay, by the length r, which represenis ‘he projection ol the nC
segment on 4 normal to the displacement required.

Should we represent the angular rotation A, by a vector ap-
plied at point n and directed parallel to the displacement A; re-

quired (Fig. 51.8), this displacement
will be numerically equal to the mo-
ment of this vector about the point C
whose displacement is studied. Thus,
the displacement A; ol some point of
the kinematic chain along a dircection
i-i caused by a change of the angle ¢,
formed by two neighbouring links and
amounting to Ag, may be found as
follows:

1. Represent the angular rotation Aq,
by a vector.

2, Apply this vector al point n of
the system along the direction of the
displacemenl required.

&

Fig. 2.8

3. Compute Lhe moment of this vector about the point whose

displacement it is desired to obtlain.

The displacement A; of any point of a kinematic chain resulting
from the alteralion of several angles will be given by the expression

A =Apry 4+ A@era+ ... A= 2: Agr (29.8)
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Problem. Determine the horizontal and vertical displacements of point €
belonging to the knee frame of Fig. 52.8 when the foundation of this frame is
rotated about point a clockwise through an angle Ag,.

Salution. Apply at }I)oint. a 4 horizoatal vector Aq,. [ts moment about point
€ will give immediately the horizontal displacement roquired

AL =Aqoh
The vertical displacement of point € will be obtained in exactly the same way
AL =Aayql
The total displacement of point C (the distance CC’) will be given by
oc' =V () ¢ (A =Aq, VIETE

The same result could be obtained following the procedure outlined in the
previous article.

16.8. DEFLECTIONS OF THREE-DIMENSIONAL FRAMED
STRUCTURES

In the most general case three different stresses M, N and @ act
across a section passed through a member of any plane system,
and therefore the general expression giving the deformations of
such systems will contain three terms, each of which character-
izes the displacement due to one of the three stresses mentioned.

In three-dimensional framed structure the cross sections of any
member will he acted upon by six stresses: two bending moments
M, and M, about the principal axes of inertia y and z of the sec-
tion under consideration, one torque moment M, about the longi-
tudinat axis = of the bar, one normal stress N, and two shearing
forces Q) and Q, parallel to the aforementioned axes y and z. Con-
sequently, in this case the general expression of the displacements
will consist of six terms, each of which will represent the displace-
ment due Lo one of the aforesaid slresses,

Following exactly the same procedure as in Art. 6.8, we shall
obtain the expression given hereunder permitting the displacement
computation for three-dimensional framed struclures

i I
=  Myndx = M, dx
Amn:ESMym—”——EJy +ESM2m‘——"—é’}: =
0 ¢

] ! I
=  M;,dzx = Nendz 3
+3 § ., 2 +2§Nm 22 +3{0nx

i} ]

L
Qun dx - on Az
X~y +3 { Qun 225, (30.8)

0
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In this expression M., and M ,,, represent the hending moments
due to a unit action (coucentrated load, when linear displacements
are studied. and unit moments in the case of angular rotations)
whose direction coineides with that of the displacement. Tn the same
way ij _represents the torque produced by the same unit action,
and N o, Qure and Q. are the normal stress and the shears pro-
duced thereby. At the same time M, M., My, My, Qun and @,
will indicate the stresses induced by the actual loading.

Coeflicienls 1, and 7, will be determined in relation with the
shape of the cross section (see Art. 2.8). The magnitude of J, ap-

pearing in the expression of the torque rigidity may be approximately
taken cqual to:

jor a square cross section
Ji=0.143q*
for an elongated rectangu]ar cross seclion (at a>>b)

Je= {u—O 63b)

lor cross sections c.onsrstmg of several rectangles of small width
(such as the cross sections of T-beams, Il-beams, ete.)~
. A
Jr = g 2 daf

{Z being the length and a the width of the rectangle)
for # circnlar cross section

mdi nrt
di=dp=cgr=g

and for an annular cross section
a n :
=45 (D'—d)=F (R —r!)

{where D and R indicate Lhe external and d and r the internal di-
ameters and radii of the ring).

When the cross sections of all the bars remain consiant, the ri-
gidities BEJ,, EJ,, GJ;,, EF and GF as well as Lhe coefficients n,
and 1, appearing in expression (30.8) may be placed in front of
the integral signs.

The compulation of displacements is carried oul with lhe aid
of expression (30.8) in exactly the same way as in the case of plane
structures described in Art. 6.8. When compuling the displacements
of three-dimensional structurves with rigid joints only the first three
terms of the expression (30.8) will be retained, while the influence
of the normal and shearing stresses may be neglected. On the con-
trary, if it were desired to determine the deflections of a three-
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dimensional hinge-connected structure one should take into consid-
cration solely Lhe normal stresses.

_'%-.-! Problem 1. Required the vertical deflection of the free end € ol a horizontal
knee frame appearing in Fig. 53.82, The frame is loaded with one vertical force
P its cross section is cireulur in shape und remains constant throughout. The
value of & shall ho Liken equal to 0.4 &.

Solutton. Fig. 53.80 represents the diagram for the hending moments arY
acting in a vertical plane normally to the axes of the frame members, Lhese

Fig. 58.8

moments being induced by the actnal loads, and Fig. 53.8¢ represents the Lorque
curve M7. No horizontal hending moments will be induced by the vertical load
P acting at point C.

Apply u vertical unit load as indicated in Fig. 53.8d and trace the graphs of
the bending moment Ml‘]’ and of Lthe torque Af; induced by this unit load as shown
in Fig. 53.8e and f. The deflection A of point € will be obtained applying Vere-
shebagin's method to expression (30.8)

. Iy .2
Y. i Lok iy — —_
Phigxgh Pagxgh | Pl
£S EJ GJy
Each term of right-hund part of this expression represents one of the compo-
i

nents of the total vertical displacements of point €. Thus, the first Lcrmm} i3

A=

@ 1o Figs, 53.8 aud 54.8 My is designated by M, —T,.
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the vertical defleetion of point B (see Fig. 53.84) caused by the bending of mem-
ber A3, This deflection entails an 1dentical defleetion of poinl €. The secoud lerm
P . ; 5 . 2 :

'%T} is the verlical deflection of point € which results from the bending of the
clement BC. The torque My = £l, cansed in clomenl A8 by the load P rotates
My Pl

¢ross seclion B about the horizontal axis through an angle ¢ — e,
£ .ﬂ I F,

Iy ¢
This rotation will cause point € Lo travel vertically over a streteh ¢f, _—';.j’ & .
T Iu
latroducing in the above expression for A the valies of J, 7, and G equal
g omdd o t .
to TR and 0.4 E, respectively, we obtain finally
Hap g R o
= Rd&E (?"’T* 0.8 )

Problem 2. Reyuired the horizontal dizplacement A along axis #C of cross
section & of a polygonal heam appearing in Fig. 34.82 as well as the angular
rotation of the same crosg section in the plane B0, The beam is buill in at
point 4 and is of eircular eross section which remains constant for all of its
elements.

Solution. The graphs ol the hending moments M,‘_,’ {acting in a vertical plane)
and of ;WbH {acting in a horizonial plane) as well as the graph of the torque M,
induced by the actual loads are shown in Fig. 54.88, ¢ and d. These graphs ace
drawn ou the side of the extended fibres of each member of the bewmn. The sign of
the lorque is indicated in the graph, this torque heing reckoned positive when
sect from that part of the structure which hins been cut off, it tends to rolale the
r-emmmn;fv part clockwise,

In ovder to determine the horizontal displacement A a unit load parallel 1o
elemoent B¢ must be applied at point X (Fig. 54.8¢). The corresponding graphs
of the bending moments M, Mﬁi and of the torque M, are represented in
Fig. 54.8f. Uging once sgain expression (30.8) and rrnrryingi out the graph mul-

1]

Liplication by the method proposed by Vereshehagin, we obtain
<] ¢2 1 1 G I 1 158 %4
v Eaoil, 7 o Al e e il e i i, ¥ et Mol - i, JLEENLT R
Am-g (g xA+gX2) g+ + X g A Xy b ET,

The two first terms of this expression account for the bending moments
acting in the vertical planes, the third for those acting in herizontal
planes and the last cue takes care of the torque. All the produets are positive
because the graphs of the bending moments which ave being maltiplied one by the
other remain all the time on one and the same side of the corvespending members,
and the torques ave also of the same sign. Replacing iu the above expression

4
Jp by 2/ (whm-n Ji= ‘%) we chtain fipally
1 4 01 16 15
AP N (1010 B8 PP, (O IRLILAL G o ) e U
A (3 g bty "'*] ET

The angular votation @ of the cross section X will he delermined applying
at this point a unit bending moment acting in_the plane BCD (Fig. 54.8g).
The correzponding graphs of the bending moments M,‘f and M,,H and of the torque

M, are shown in Fig. 54.8%. It will be noted that the bending moments acting
in the horizontal plane will remain constantly nil.
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Expression (30.8) gives

244 1 4xX1%1  4x2xd 1 1"
=y — e e (b A=
'P 2 XAxLX gy BT Ed g iy (Srfda) EJ

The magnitude of the loads and the length of the bemm mem hers heing expressed
ia lons and in metres, respectively, the value of Young's modulus £ must

[qu H=4t ;z:-fz
zm |50

+_&=2 =
fi”‘“f”’f' .n:/my
(5]
I4=lm) - Lo=im
-

o L

Fig. 54.8

he expressed in tons per square metre and that of J in metres in the fourth power.
The value of the horizontal displacement A will be then obtained in metres and
that of the angular rotation ¢ in radians. Both these values being positive, the
directions of A and ¢ will coincide with those chosen for the unit load (see
Fig. 54.8¢) and for the unit moment see Fig. (54.8g).



9- ANALYSIS OF THE SIMPLER
STATIGALLY INDETERMINATE
STRUCTURES BY THE METHOD
OF FORCES *

1.9. GENERAL

While taking his course in the strenglh of materials, the reader
has already met wilh structures which caunot be analyzed using
solely equilibrium equations. The computation of stresses set up
in these structures requires the use of additional equations, namely
deformation equations. Such structures are called statically inde-
terminate or redundant.

The main difference between the redundant structures and the
statically determinate ones resides in the fact (hal the stress dis-
tribution depends for the first ones not only on the loading but also
on the relative dimensions ol their members. If these members
are made of differenl materials the stress distribution will equally
depend on the elastic properties of these materials. Stalically inde-
terminate structures are also very sensible to such factors as the
sottlement of their supports, temperature variation, manufacturing
and erection defects, etc., which give rise to additional stresses,
while the same factors would have no influence whatsoever on stat-
ically determinate slructures. At present redundant structures are
widely used in numerous branches of engineering activities. Their
analysis must always start with a close examination of arrangement
of their members, Lthe primary goal of this examination heing the
determinalion of the degree of redundancy.

*

*The method of analysis described in the present Chapler is referred to by
various authors either as the method of deflections or the method of least work,
depending on the procedure adopted for the determination of the coefficients to
the unknowns.

We prefer to translate literally its name from Russian and to call it meth-
od of forces. Indeed, in thal way we are sure to avoid confuses with the slope
and deflection method (see Chapter 13} and moreover both methods will he con-
sistently named in conformity with the nature of the unknowns,
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This degree of redundancy is equal to the number of redundant con-
straints* whose elimination would transform the given system into
a statically determinate one without impeding iis geomelrical stability.

[n Lthe previous articles it has been already explained that geo-
melrically stable systems are such systems whose shape cannol be allered
without a deformation of their elements.

There are wo rvedundanl constraints in a stalically determinate
system and the elimination of a single constraint will always lraus-
form (hese systems in mechanisms whose elemenls are endowed
wilth a certain freedom of movemenl.

The beam appearing in Tig., 1.92 constitutes a straclure, whose
dogree of redundancy is equal to one, for one of the supporting

1)
= It
. ia) 7’;7
3—%} ,,-;,- _7;., i Piji . p. l
() (a) {6
Fig, 1.9 Fig. 2.9

bars conslilules a redundant conusection with the ground. Thig beam
will beeome statically determinatle ag soon as one of these bavs is
eliminated (as in Fig. 1.95) or through the introduction of an inter-
mediate hinge (as in ig. 1.9¢).

The [rame appearing in Fig. 2.9« constitutes a strueture redun-
danl to the third degree, its transformation into a stalically de-
terminale syslem requiring that at least one of its members should
be cul in Lwo (Fig. 2.98). We have scen previously that this oper-
ation is equivalent to the eliminalion of Lhree internal constraints
corresponding to three internal forces acting across the section,
namely, the bending moment, the shear and the normal stress.
“I'he equilibrivm equations alone do not permit the determinalion
of these inlernal forees.

Any other closed frame with rigid joints lying in one plane will
also form a system with a degree of redundancy equal to three.

0

*Hereunder the term constraint will signily everything capable of prevent-
ing the mutual displacement of different points or cross sections ol a structure.

The adjective redundant should never he regarded as synonymous to super-
flnous or wselexs.
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The two framed benls appearing in Fig. 3.9 are Lypical examples
of similar structures. In the frame in Fig. 3.96 whose uprights are
rigidly fixed in Lhe ground, the latler may be regarded as constitul-
ing an additional member of infinite rigidity.

The structure appearing in Fig. 4.9¢ is provided with a hinge
ai midspan of the top girder. If we pass a section through this
hinge, this section would be acted upon by two stresses N and Q only
(Fig. 4.98). Consequently, the upper frame has two degrees of redun-
dancy while the whole structure is redundanl Lo the fifth degree,

o aset
PR

(a} 4 ib) o {a! T

Fig. 3.9 Fig. 4.9

for the lower frame is completely closed and therelore its degree of
redundaucy equals three. The elimination of all the redundant con-
straints could reduce this system Lo two columns built in at their
lower ends and provided at their wpper parts with two horizontal
brackels as indicated in Fig, 4.9b.

The Lotal number of redundant constraints could also be ob-
tained in the lollowing way. The top frame being provided with
a hinge is redundant in the second degree; in addition a built-in
end is always equivalent to three constraints and therefore two
fixed sapports of the frame represent a total of six coustraints,
As the equilibrinm equations will permit the determination of
three reactions only, the other three constraints are redundant.
Therefore the whole system will have a degree of redundaney equal
Lo five.

It should be noled that there are usually several ways of elim-
inaling the redundant constraints in order to convert the given
structure into a statically determinate one, but the number of
eliminated constraints will always remain the same. Thus, the
simple statically determinate struclures appearing in Fig. 1.9
and ¢ have been derived from one and the same redundant strac-
ture of Fig. 1.9a, the first one by the elimination of the intermediate
support and the second one by the introduction of a hinge. The lalter

25853
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eliminates the constraint preventing mutual rotation of two cross
sections, one situaled to its right and one Lo its left.

The introduction of a hinge into one of the members of a redundant
structure or the replacement of a rigid joini jormed by the meeling
of two bars by a hinge is always equivalent to the elimination of one
constraint and will therefore lower by one degree the redundancy of
the whole structure.

Hereunder hinges of this type shall be referred to us ordinary hinges.

In eliminating the redundant constrainls of some structure care
should be taken not to disturb its stability. From this point of
view Lhe climination of one of the vertical supporling bars of the
framed bent shown in Fig. 5.9b would be unacceptable, [or the

= (a) (4) 7 (c)

Fig. 5.9

three remaining bars would concur at point A4 and, consequently,
these bars would be uncapable of preventing the rotation of the
whole system about this point. The correct way of eliminating the
redundant constraint of this structure is shown in Fig, 5.9¢.

The degree of redundancy of complicated structures may be
determined remembering that each hinge introduced instead of
a rigid joint formed by the meeting of K bars reduces the degree
of redundancy of the system by (KX — 1), for such a hinge replaces
(K — 1) ordinary hinges (Fig. 6.9a¢). Hence the degree of redundancy
of a structure can be obtained multiplying by three the number
of closed contours forming this structure (rogardless of any hinges,
whether within the structure itself or at the supports) and then
reducing the number so obtained by the number of all the ordinary
hinges existing in the system.

Hinges common to K bars meeting at one point should be regard-
ed as equivalent to (K — 1) ordinary hinges.

Mathewatically this rule may be expressed by the following for-
mula

n=3m—H (1.9)

In this expression r is the degree of redundancy, m is the number
of closed contours which form the structure, and # is the number
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of ordipary hinges. It will be remembered that we have agreed Lo
use the term ordinary hinge for a hinge placed at the meeting of
two bars, the term double hinge meaning a hinge introduced at the
meeting of three bars and so forth.

The structure appearing in Fig. 6.9) consists of eight closed con-
tours {marked with Roman figures) and against each joint we have
entered the equivalenl number of ordinary hinges. The horizontal and

Commen hinge

Ordinary hinges

Ordinary hinge

Ordinary hinge
(a) (&)
Fig. 6.9

vertical bars meeting at the outer joints of the system are regard-
ed as a single knee shaped member, these bars being rigidly conne-
cted together. Consequently, m =8; F=34+3+3 4+ 4 +1 4+
+2+14+1+141=20 and n=3 x §-20 =4, meaning
that the struclure is slatically indeterminale in the fourth degree.

As already mentioned, the elimination of any one of the con-
straints of a statically determinate system transforms immediately
this system into a mechanism. showing thereby that the number
of constraints in such syslems constitutes the absolute minimum
required to ensure their stability. Any additional constraint in
excess of this minimum transforms the system into a redundant
one.

It is clear that in such a system there is at least one constraint
that can be eliminated withoul prejudice to its stability, However,
there may exist such constraints which cannot be excluded with-
out interfering with the stability of the struclture. Hereunder we
shall designate such constraints by the term necessary constrainis.
It is interesting lo note that the stresses corresponding to the neces-
sary constraints can be always determined with the aid of statics
alone. An example of a necessary constraint is afforded by the ver-
tical supporting bars of the framed bhent represented in Fig. 5.9a

25¢
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Neither of these two bars can be removed withoul rendering the
system unstable.

The constraints which can be eliminated wilhont prejudicing
the stability of the system form the ordinary redundant constraints.
The stresses corresponding to these constraints cannot be derived
from the equations of equilibrium alone. The horizontal supporling
bars of the portal frame just mentioned (see IMig. 5.9a) constitule
an example of the latter type of constraints. We know thal for
cach system of coplanar forces in equilibrinm statics provides three
independent equations. Ilence. if some system is connected fo the
ground by means of Lhree supporting bars, Lhe stresses in these
bars may be compuled using equilibrium equa-
tions alone irrespeclively of the degree of redun-
dancy ol the whole system. A similar slructure
may be therefore regarded as infernally redun-
dant.

Externally this structure is statically delerminate
for the abutment reactions and the external loads
constitute a balanced system of forces all of
which can bhe completely determined with the
aid of statics alone. For such systems all the
external (support) constraints belong to the cate-
gory of necessary ones. 1f, on the contrary, a structure is endowed
with more than three external constraints such a slructure can
nsually be considered hoth as externally or internally redun-
dant. Indeed, one can choose at will those of the constraints
which will be regarded as the redundant ones. Thus, the frame
of Fig. 5.9 may be regarded as externally redundant if one
decides to eliminale one of the horizontal supporls in order to frans-
form it into the statically determinate system showu in Fig. 5.9.
On the other hand, if one decides to consider as redundant the con-
straint which prevents the rotation of one part of the crossbar about
the other, in other words. if one decides Lo transform Lhe frame inlo
a stalically determinate structure by the introduclion of a hiage
as shown in Fig, 7.9, this same frame should be considered as an
internally redundant one. The frame of Fig. 8.9¢ whose degree of
redundancy equals six may be considered:

(a) as being three limes internally and three times externally
redundant, if ils conversion into a simple statically determinate
structure appearing in Fig. 8.9b is carried out by the removal of
three external conslraints (for which puarpose one built-in end is
set free) and of three internal constraints;

(b) as being four times internally and twice externally redundant,
if it is decided to translorm Lhe given syslem into a statically deter-
minate one as indicated in Fig. 8.9¢;

Fig. 7.9
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(¢) finally the same frame may be regarded as being six times
internally redundant. if its conversion into two separate slatically
determinate parts is carried out as shown in Fig. 8.9d.

The same [rame cannot be regarded as statically indeterminate
only from the point of view ol its external constraints. Indeed,
the system is redundant in the sixth degree while a maximum of

i —-—4)—‘ — i
o fa) e G rh} s fe) 7i,, g {d) s
Fig, R.9

three external constrainls can be removed without disrupling its
stability. It is clear therefore that this system cannot be converted
into a statically determinate one by Lhe climinalion of external
constrainls il]OIl[’-.

2.9. CANONICAL EQUATIONS DEDUCED BY THE METHOD OF
FORCES

In the previous article it was shown that the stress analysis of
redundant structures vequires the use of addilional equations based
on the strains and dellections suffered by these structures. In the
method of forces these equations are oblained through Lhe trans-
formation of the given structure redundant to the nth degree into «
simple statically determinale one.

The elimination of any constrainis will inlroduce alterations
neither in the stress distribution nor in the strains and dellections
if in the place of constrainls so removed we introduce forces* equi-
valent to the reaclions developed by these constraints. Consequent-
ly, it the simple strocture is acted wpon both by the actual loads
and the additional actions which replace the eliminated constraints,
the strains and defleclions ol such a system as well as the siresses
induced thercin will be exactly the same as in the original one and
therefore the two become equivalent.

*

*As previously (see Art. 2.8y, the term force will apply equally to moments.
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Since no displacement of the given redundant structure along
the reactions at the supports is possible, the displacements ol the
conjugate simple stalically determinate structure along the same
directions must also equal zero, even if some of these supports
were eliminated when converting the former te the latter. This
means that the reactions developed by the redundani constraints will
be such as is recessary to render nil the deformations of the simple stat-
ically determinate structure along the direction of these reactions.

The equation translating the above stalement into malhematical
symbols will bhe as follows

B=Aut-dt oo oDy aoiH A4 Aip=0 (2.9)

In this expression the first of the two indices following the lelier
A shows the direclion of the displacement (the latler coinciding
with the eliminated constraint) and the second one the action caus-
ing Lhis displacement. Thus A; indicales a displacement along
the direction i cansed by the reaction of the constraint k. In the
same way, A;, will indicate the displacement along the direction
ol constraint ¢ cansed by the applied loads.

Let us indicate by X, the magnitude of the reaction developed by
the constraint % (this reaction being eilher a moment or a direct
stress). At the same time let us designate by §;, the displacement
caused by a unif action. In that case we can replace A;p by X6
and the expression (2.9) will become

iﬁni =X16i1+X'35i2+ e +Xn-16§.n-1+xnain—|"-ﬁip: 0 (39)

In this way the equivalence ol the original structure and of the
simple statically determinate one will be mathematically intec-
prefed by a system of n linear equations
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Equations (4.9) constitute the additional expressions based on
the deformations of the system which permit complete determina-
tion of all the support reactions and of all the stresses induced by
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the given system of loads in the original redundant structure. The
first of these equations expresses the idea that the displacement of
the simple struclure along the direction of the first eliminated con-
straint (that is along the direction of force or moment X,) is equal
to zero. the second, that the displacement of this same structure
along the direction of the sccond constraint which has been re-
moved is also equal to zero, and so forth,

The system of simultancous linear expressions such as (4.9) form
the so-called canonical eguations of the method of forces, this name
indicating that these equations are of standard form and that the
unknowns are the reactive forces developed by the climinated
constraints. The number of these equations is always cqual to the
number of the constraints removed, which means that it corresponds
to the degree of redundancy of the given structure. It is important
to note that both the number of terms in each of the scparate
¢quations and the total number of these equations depend solely
on the degree of redundancy of the structure and are in mo respect
influenced by any of its other peculiarities.

The coefficients Lo the unknowns of equations (4.9) represent
the deflections of the simple structure obtained by elimination of
the redundant members, these deflections being due to unit loads
and moments acting along the direction of the eliminated con-
straints. Numerically the values of these coefficients depend on the
layoul of the structure and on the cross-sectional dimensions of
its members, Should these members be made of different materials,
Lhese coefficients will also depend on the elastic properties of the
Jatter.

Thus coefficicnt 8, entering the above equations will represent
the defllection along the direction i induced by a unit action (moment
or load) acting along the dircction k. The unit displacement &y
situated in the main diagonal of the canonical equations and char-
acterized by two identical indices will be termed hereafter prin-
cipal deflection whereas the deflections such as §;; standing in the
socondary diagonals of the aforesaid equations will he termed sec-
ondary deflections. On the basis of Maxwell's theorem of reciprocal
displacements, the secondary deflections situated symmetrically
about the main diagonal will be always equal between themselves

Byp = Oper
L 4

*1t should be remembered that the dimensionality of a unit deflection is that
of a ratio of a deflection to the action which has caused it. Conseguently, a unit
translation duo to a concentrated load will be given in cm/kg while that due to
unit couple in em/kg-em or in ke=1. In the same way a unit angular rotation due
o a unit load will be given in kg-! and an angular rotation due to a unit couple
in kg.em-1,
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This reduces considerably the volume of work necessary to deter-
mine the ecefficients to the unknowns. These are usually obtained
by computing the deflections of the simple structure produced by
unit actions applied along the directions of the eliminated con-
straints. |t is recommended to carry out these computations using
the procedures developed in the preceding chapter.

The diagrams of bending moments induced in the conjugate
simple structure by each of the unit actions (X; = 1) will be
traced separately, each of these graphs bearing the number of the
climinated constraints, the same applying to the actual loading
(the M, graph).

The unit deflections &;;, will be obtained through the multipii-
cation of the corresponding unit graph M; by the unit graph M,
whereas the deflection due to the applied loads A, through the
multiplication of the unit graph M, by the graph of the aclual
bending moment Mp.*

The maein or principal deflections will be always positive whilst
Lthe secondary ones as well as those due to the applied loads might
be both posilive and negative. When all the cocefficients to the un-
knowns entering the system of simultaneous equations (umit dis-
placements) as well as the deflections due to the applied loads are
known, one may proceed with the solution of the said equations,
The roots of these equations will furnish the values of the unknown
stresses acting in the redundanl members. These will permit the
construction of the bending moment diagrams induced by X,
Xa ... X, ete., in all the necessary members of the strue-
ture. Il is convenient to use for this purpose the unit graphs traced
previously. The operation consists in the multiplication of all
the ordinates to each of these graphs by a constant factor equal
to the magnilude of the action just ohlained. The pertinent ordi-
nates to the diagram of the bending moments acting in the redun-
dant structure will be obtained through the summation of the ordi-
nates to the graphs induced hy the stresses X and by the actnal
loading in the aforcmentioned simple statically determinate struc-
ture.

The same result will be aclieved if the simple structure obtained
by eliminaling all the redundant members were subjected simul-
tancously to the applied loads and to all the stresses acting in the
climinated members determined as described ahove.

The bending moment graph due to the combination of all these
actions may be constructed using any of the well-known procedures.

+

*For simplicity we have neglected the influence of normal and shearing
forces. 1T it were desired to account for these, one should trace the corresponding
diagrams and compute the corresponding products.
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It is worth noting that several different simple structures may
be used for the computation of the same redundant structure, these
diifferent structures being obtained by the elimination of different
members regarded as redundant. It is very important to choose
the one leading to the greatest possible simplification of the com-
putation through the reduction to zero of a maximum nuniber of
secondary deflections. Ove should also endevour to oblain bending
moment graphs of the simplest possible configuration for the men-
bers of Lhe simple structure.

To make clear the above statement, let vs take as an example
the portal frame appearing in Fig. 9.9¢ and let us examine the var-
ious simple structures which may be derived therefrom. To begin

Redundant Simple
siructure structure

x—-[
.
X Th

(a) (b) ’f“;

Fig. 9.9

with lct us eliminate the three constraints which prevent both the
horizontal and the vertical movements and the angular rotation
of the lower extremity of the left-hand celumn. The simple struc-
turc obtained in that casc appears in Fig. 9.95. The unknowns
X,. X, and X, will represent the reactions developed by the elimi-
nated constraints and the simultaneous equations will express the
idea that the deficctions and rotations along the directions of the
eliminaled constraints remain nil,

Let us choose another way of rendering the redundant structures
statically determinale, namely, by cutting in two the top bar as
indicated in Fig. 9.9¢. This is equivalent to the eliminalion of
three constraints preventing mutual displacement of the two [laces
of the crossbar situated to the right and to the left of the cug,

Hence, cach of the unknowns X, X, and X, will represent in
this case a group of Lwo opposite forces or couples acting over the
two cross sections just mentioned.

As to the system of canonical equations, it will always remain
of the same form regardless of the way in which the simple stati-
cally determinate structure has been obtained.
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In the first of the two cases considered above these equations
would express the idea that the movements of the lower end of
the left-hand column remain nil. In the second case the same equa-
tions would mean that the two adjacent sections through the cross-
bar remain motionless with reference to each other. llowever,
these equations do not exclude the possibility of the two seclions
moving or rotating together.

In the case of the simple struclure of Fig. 9.90 the coefficient
8, represents the horizonlal motion ol the lower end of the left
column caused by the vertical unit load X, = 1. As for the simple
steucture of Fig. 9.9¢, the coefficient 8,, represents alteration of
the vertical distance between two adjacent cross sections ol the
top beam induced by two horizontal unit lorces X, == 1.

3.9. ANALYSIS OF THE SIMPLER REDUNDANT STRUCTURES

Let ns examine the sequence of operations leading to the deter-
mination of all stresses in redundant structures taking as an exam-
ple a beam built in at one end and freely supported at the other
(IFig. 10.9a). The simple statically determinate structure can be

Redladiord struciue

(d:
Alr fentrocd
e Y !
|
1 2k
B R L
a9 Fa E .?,
—
)
Fig. 10.9

derived from the above by eliminating the right-hand support thus
obtaining the beam appearing in Fig. 10.95. A single constraint
has to be eliminated for this purpose (that corresponding to a roller
support) and therefore the given structure is statically indetermi-
nate in the first degree. Apply now the unknown reaction X, to the
cantilever beam at its free end together with the uniform load of
¢ kg per unit length as shown in Fig. 10.9b. The equation, express-
ing that the deflections of the simple statically determinate struc-
ture and those of the given redundant heam aro identical, bocomes

KBy Ay =0 (5.9)

More precisely this equation shows that the deflection along the
direction of the eliminated reaction is nil. The determination of
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X requires that the values of the coelficient 8, and of the term
Ay, should be previously ecalculated, the first of the two repre-
senting the deflection of the right-hand extremity of the cantilever
beam along the reaction X; caused by a unit load acting in the
same direction (Fig. 10.9¢), and the second—Llhe deflection aloug
the same direction due to the loads applied. The coefficient §j;

Fig. 11.9

will be found raising to the sccond power the unit bending moment
graph M, (Fig. 10.9¢). As for the term Ay, it will be obtained by
mulliplying the area of the same unit bending moment graph 7,

by the M, diagram due to the actual loading (Fig. 10.9d).
Hence

I 2 1 3
Subg m B
2 .3 1 "
O, L % S TR,

T BEJ

Substituting these values in equation (5.9) and seolving this equa-
tion with respecl to X; we obtain

Ay 3
e i e T

The diagram of the resulting bending moments acting at the
cross sections of the given redundant beam will be found summing
up the ordinates to the M, (Fig. 10.9d) graph with those to the 37,
graph all the ordinates to which have been previously multiplied
by Lhe magnitude of X, (Fig. 11.9). The diagram so obtained ap-
pears in Fig. 12.9. Thus the ordinate to the resulting bending moment
eurve will equal

at midspan

_— 3 i2 12
M= M1X1 -+ ﬂfq qulg __Q'T =qj—ﬁ
and at the wall
— 3 I2 't
M=MX+M=5qt — 5 = -2
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The maximum and minimum values of the resulting bending
moments can be easily derived from the diagram of the resulting
shears Q for, as it is well known, the zero ordinate points of this
diagram always correspond to the extremal values of the bending
moments.

This same beam (Figs. 10.9¢ and 13.9¢) could be analyzed using
for simple statically determinate structure the one obtained elim-
inating the constraint which prevenls the rotation of the buill-
in end. The simple end-supported beam obtained in this way ap-
pears in Fig. 13.96. The graph of the bending moments produced in

Reulundant Sieture
5 g

E el aq
fa) AT T iairiiaei 01’(

= L -

4 y -, g f.,;,}s;,l :i;-

Jemple structare

rauxfrlﬁ""""""'"‘"""'"""j“ gy

A (""&

(el (

Fig. 12.9

this new system by a unit couple acting across the section at the
wall appears in Fig. 13.9¢, while the graph of the bending moments
due to the applied loads is given in Fig. 13.94.

Raising to the second power the acvea of the 37, graph we oblain

2 i
Byge=lobig z "BET 3R
Multiplying the same graph by the area ol the M, one we got
R il S b P
Me=5 b3 5mr T mEr

The introduction of these values in expression (5.9) gives

Ay 2
R [N i3
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This shows that the simple statically determinate system is acled
I :
upon by a momenl X, = —% applied to the left end of the beam

and by a uniformly distributed load of ¢ kg per metre (Fig. 13.9¢}).
The resulling bending moment diagram induced in the simple
structure by these two actions will represent the bending moment
diagram for the given redundant structure (Fig. 13.9f). It is readily
seen thal this diagram coincides exactly with that of Fig. 12.9
obtained previously using a different simple structure (sec Fig.10.95).

The above example shows Lhat the following sequonce of opera-
tions may be conveniently adopted for Lhe stress analysis ol redun-
dant structures by the method of forces:

1. Choose a simple statically determinate structure obtained
by eliminating all the redundant constraints of the given one.

2. Replace the eliminaled constraints by unknown forces acling
in the same direction.

3. Form the canonical equations (4.9) expressing that the displace-
ments of the simple structurc along the direetions of the elimi-
nated constraints under the combined action of the loads applied
and of the unknown moments and forces replacing these constraints
ace equal to zero.

4. Apply successively to the simple structure the wnit actions
X, =1, Xo=1, X;=1. ..., Xo, =1 and trace the diagrams
of the corresponding bending moments M;. Trace equally the dia-
gram ol the bending moments M, duc to the applied loads.*

3. Caleulate all the coefficients 6, to the unknowns multiplying
one by the other the unit graphs mentioned in ilem 4.

ti. Caleulate by the same procedure the free teems A, For Lhis
purpose the unit graphs must be multiplied by the M, graph due
to the applied loads.

7. Solve the system of simultaneous equations with reference o
the unknown actions Xy, Xa, . . ., X,

8. Compuic Lhe ordinales to the resulting bending moment curve
by summing up the ordinates to the wnit graphs multiplied pre-
viously by the magnitude of the corresponding action** with the
ordinates to the bending moment curve due to the actnal loading.

One may also apply to the simple statically determinate strue-
ture all the redundant reactions and stresses just determined togeth-

L 4

*All the above refers to structures, deformations of which remain practi-
cally unaffected by direct and shearing forces. If it were otherwise, it would be
necessary to trace equally the diagrams for the shears and normal stresses due

both to the unit actions (¢; and ¥;) and to the applied loads (Q, and Np).

**1t is strongly advised Lo trace new bending moment diagrams induced by
the redundant reactions and not to alter the scale of the unit gruphs Lraced
previously, for the latter procedure is a source of frequent errors.
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er with the actual loads, tracing thereafter the combined bending
moment diagram. This diagram will coincide with that of the
given redundant structure.

Let us proceed now with the solution of a few problems.

Problem 1. Trace the bending moment diagram [or the portal frame of
'Fig. 14.9z. The moment of inertia of the crossheam is twice as large as that of
the uprights.

Solution. The portal frame under consideration being redundant to the first
degree, the simple statically determinate structure may be obtained eliminating
the herizontal constraint at the right-hand sepport (Fig. 14.98).

e "’ZZJ":J.! F

Bocdes et i:

strueture| <
4
: ‘ ;

L

{a}

Fig, 14.9 Fig, 15.9

The bending moment gralphs due to the applied loads and to 4 unit load acting
along the direction of the eliminated constraintibave been given in Fig. 29.85
and ¢ of Art. 9.8. The equation expressing that the horizontal deflection of the
lower e¢nd ol the simple structure is nil becomes

X1+ 44=0
The coefficient 8,3 will he given by
B2, 4 heh B
3 B ET; " 2Ed, GBI
The deflection due to the applied load has been computed in Problem 2
of Art. 9.8

8y =2 (4h—+3a)

Pr2 ¢h & Ph2
dip=—7; (3+7) =137, =30
flence
.l :31;,, P
L T

The resulting bending moment graph will be obtained by multiplying all
the ordinates to the unit graph by ﬁ) and by adding them thereafter to the ordi-
nates to Lhe bending momeni diagram duc to the applied loads. This graph ap-
pears in Fig. 15.9.

; Problem 2. Trace the bending moment diagram for the redundant knee frame
represented in Fig. 16.9a.
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Solution. This structure is statically indeterminate 10 the second degree.
Let ue eliminate the constraints at the lower support obtaining thercby the sim-

b3 k
el SaTunagsl FO N gl
I Sfmacbe e PO Strtidtuee
| B
isF) Lt i
Fig. 16.9

ple statically delerminate structure of Fig. 16.95. The correspending system
of equations (4.9 becomes
Xdyy+Xobdiz+A24=0

Xyipy + Xobog+ Agg =0

The graphe of the hending moments induced by unit loads acting along
the climinated constraints as well as by the loads applied appear in Fig. 17.9,

I'I |I71:

Fopls
[\:-.'TJ

Fig 17.9

The coclficient f;; will ke obtained raising to the second power the 3y graph
4ad
e [ 8206 % .
du=g7 ( g ota) =g
The coefficient &3 is givon by the produet ol the A7y and ATy graphs
1 a as
=gy ———— A —
dp=Oay=—F7 a3 2ET
Raising to the second power the M, graph, we ohtain

{ a% 2 73

=gy T I
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The free terms of both equations will be obtained multiplying the 7,
and the M, graphs by the M, graph

1 % a 3 ga® Sgat

quw[ T T “‘“)“SEJ
- 1 ga? @ gt
du=—g7 3 03="%%7

Tutroducing the values so obtained into the system of equatlions and dividing
. ad
bolh of these equations by 7T W ohtain
A s 1 n
? )11—? X2+?Q‘ﬁ=()
1 1 1
—g X1t Ag—rga=0
The solution of these two equalions yields

3 3
4Y1—= '——7- quy ‘Yg -—2—8' qit
Iy order to oblain the hending mement dingram for the redundant structure
apply simultaneously to the simple staticatly determinate ene both the actual
loads and the unknown reactions just determined. Reaction Xy tust be directed

s Uk
g =R
\'E: I
=N
BT L 2
e ?
2 Fgu®
J A ?\ 38 Redunagrt| |
: ; " Lents, i
i I © Resulting slrusture
Be : M gragh
fa) ‘a)
Fig. 18.9 Fig. 19.9)

towards the left, its velue being negative (Fig. 18.94). The expressioas of Lhe
hending moments acting in each member of the structure will be ablained as usu-
al considering the lower end of the column as its tefi-hand extremity and marking
this end with an asterisk.

Section I-1

3 ot
.’ifj'r=T qaxl._%
for ry =0 MI=0
_a 3 " ga® - 5 »
for oy = D) M _'7—{”?— 3 __an
e r_3 qe® _  qa?
forzy=a M i e
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The maximum vaiue of M¥ will be found equating to zero the first deriv-
alive of the above expression with reference to oy

aul 3
st
wherefrom
Iy =I‘o-=-il’l
Fi
af L : ; : e A
max T W ET Y g T

Section IT-IT

R SOMSPNS T T .
/) 3 gazy- 5 1 7
2
for.'r:g:U .'”Ir= —-%
g it 8 R
forzs=un M = pTS gre -+ 7 a0 5y

The resulting bhending moment graph for the redundant structure is shown
in Fig. 18.95.

Problem 3. Trace Lhe bending moment diagram for the portal frame of
Fig. 19.9.

Nalution, This struclure is redundant to the third degree. Tet us compare the
three simple statically determtinate stinetares shown in Fig. 20.9 with a view of

\.)('?

PP

o

‘K-{’ XJ v . Xz
oo ™ —trr |
71 X, Fossible simple structures
(a) (&) {c)
Fig. 20.9

choosing the one which will reduce to & minimum the amount of computation.
From this view-point preference should be given to symmetrical systems, for
in thal case it becomes possible to trace unit bending moment graphs and to
compute their produets only for one half of the structure,

On these grounds the simple structure appearing in Fig. 2094 should he
rejected forthwith. Both struclures of Fig. 20.96 and ¢ are symmetrical hut it
will be easier to trace all the necessary bending moment geaphs for the one appear-
ing in Fig. 20.9c. Hence our choice will fall on the latter. The corresponding
bending moment graphs are represented in Fig. 21.9.

Ab—Bad
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Let us form the equations expressing that the mutnal displacements of the
two faces of the crossbeam un hoth sides of the ent ave uil,
Nebpy - Xodiz 4 Xadigo &gy, —0
;\'1?}3! B Xﬂ(}gg -| ;"nﬁe;i = i\gp =1}
K10y — Xybag— Xgbgg 1 Ay, 20
sefore procecding with the computaiion of all the coellicients atlention
should be drawn g the fact that all the graplis can be subdivided into symimet-
rical ones (M, and M3l aud antisywmelrien] ones (W, and 3,0, The ordi-
uates Lo the lelt-hand and to the vight-land halves of the lalter are equil in

amount but opposite in sign, heing situated on difierent sides of the carrespond-
ing members ol the portal frame. I cun he easily proved that ol the defiections

o’ X.=1

i e A - [t
?rHIlI-’.‘}lll i 2

g H @ g 8 £
= JE L
a 7 £

Fig. 21.9

computed maltiplying symmetcical graophs by antisymmeleical ones will he al-
ways nil. For this vescon the lollowing deflections appearing in the aliove equa-
tions will reduce te zero

8120 Bap. d2a. Byns Aqp and Ay,
Consequently, the equations themselves becomy
Xibyy-b Xybyp =1
Nyl — Ny =0
Xobdaa—-Agy,— 0
the first two leading imumediately lo
Xi=0and X;-=0
aed Lhe thind ope yieliling

x Az
T 0y
Henes we need caleulate only the dellections Ay, and &gy
PR, N ...
s 2 2 LJ g
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Conscquently

. Gbpe
A (a oy

The final diagram ol the hending moments acting in the redundant struetare
muy be now obtained mnltiplying the ordinates to the M, graph by the magni-
tnde of Xy and summing them up with the ordinates to the My graph duo to the
aclual loading. This bending moment diagram is represented in Fig. 22.9.

Froblem 4. Determine the thrust devalnped at the abutments of the two-
hinged arch appearing in Fig. 23.92. The neutral line of this arch {ollows a parit-
holie curve given by

4f
y:_;a" {({—ux)x
The rise of this areh is less than oue ifth of 11« span and the stiffess of its evoss
sections remaing constant and cqual te EJ.

Solution. Let us regard as redundant the horizontal component {thrust) of

the reaclion developed at the lelt-hand support (Fig. 23.95). This leads to

X’t“”"—ﬂ’pzﬂ (G"-l)

Seeing that the neutral line of the arch is a curve, Vereshchagin's method be-
comes inoperative and therefore Mohr's integrals will have to be computed
analytically, For flat avches this problem is vot very complicated for withoul
appreciable error ds may be replaced by dx and cos ¢ may he Laken equal Lo 1.

v
I
aPnt 3% FEEEEEEBIEI[EE}IEEH’?
[01&3?,! ] T+877 ! :
LN 2 i i ] %
Pridikq - A = S\ #v ol sttt St R
a+5h

Resulting

M yraph H fa} ;
| . )
! ]
fif B

a+6h T 76) §
Fig. 22. 9 Fi, 28, 9

The iutegration will he carvied ont hetween 2 = 0 and = = 1, The angle ) just.
mentioned is the angle formed hy the tangent to the neutral line and the
z-axis. [t should he rememhered that normal stresses must be taken into eonside-
ration when computing the horizoutal displacement of flat arches due 1o hori-
zontal loads, Ilence Lhe coefficient &y will he ealeulated using the expression

8 =
AMids Nids
Oy = g s i ]
A ®
1]

EF

26*
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wlere

—_ 4
and -
Ny=—1lcosg=—cosy

Hteplacing ds by dz and putting cos ¢=1 we obtain
162 5 = L . &gk L
we g § #0— kg § g5 gty

a 1]

The displacement Ay, due lo vertical londs will be determined using the
formula

o T, ds

where
1 2 &
M, =‘f_) s—gg=4a (I— )

This leads to

a
: 1 4 L. ZEf
a1,,=S e Ly as= — i x
0
{ !
2 42 dp e — 221 9.2 3 2d) do =
X S {l—x)2addr= — RET § (12x2 =223 —ad) do=
0
: ] 5 3
e By Y I .2
e 3 4 H] 10ES

The solation of equation (6.4) yields immediately the value of Lhe desired
throst X,

_ qi®
T
rF

Problem 5. Kequired Lhe stresses in all Lhe elemenls of the framed struclure
appearing in Fig. 24.94. All the members of this structure are of the same cross
section. Bars 5 and 6 have no common hinge at midlength.

Solution. Since the structure is redundant to the first degree we may obtain
the simple slatically determinate one by entting diagonal ¢ (Fig. 21.94). The
corresponding equalion wilt he of the standard [orm

X6y Apy =0
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The deflections 8y and Ay, may be obtained using the expressiens developed
previously for through structures

1
by =X = SV
NN I -

n | «F.&

Bip= T = 3NN

In these expressions X are the stresses induced in the different bars by the
unit load Xy = 1, and &, are the stresses due to the applied loads,

(a) Redundunt strveture () Sanple struelure

-
v ad P
]
X
' 7
] o i i
4 p; %
O -‘QS

Fig. 24.9

All the peeessary calenlations are given in Table 1.9. The column which
should normally contain the cross-sectional areas of all the bars has heen omit-
tod, these areas remaining constant througheut the structure.

Table 1.9
Har No . ! N, N, NN Wi
1 Pa o
1 a —_— P i -
V2 V2 2
1 Pa a
2 e P b Traniate _—
a V:Z VZ 3
1 a
g a2 —--ﬁ 0 ] .E
1 Pa 74
4 —— & e Tr
' % V2 2
3 2?2 | —PV3 —2Pa a V2
i a V2 1 0 il a3

Total —? 3L2 1| 2+2 V2)a
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Using the data contained in the above table we may easily compute the
values of Agp and By

a .
Atp= TR (342712
ﬁu=% (2+27V/3)

[nfroducing these values inte the standard equation we out
v p3—=212
Xy~ P2 Vi+4

Stresses in all the different members of the given structure will be readily
oldained using expression

Ni=Ni | .E;,'X{

The lirst term of the right-hand part of this expression represents the stress
induced in the corresponding member of the simple structure by the applied
Yoads, and the second the stress induced in the same member by the reaction ol
the redundunt constraint, This expression constitutes Lhus one of the applications
of the principle of superposition. ¥or har 2, the total stress will equal

o . 1 3+2V3 12773

No=Nap - NoXy=P+ (-——)P — Lo

i ks VE)avaka at+ VD
Problem 6. Required the stresses in a Lrossed beam appearing in Fig. 25 .Ya.

The maein beam whose length is equal to the total span of the strueture works
in bending, while the reinforcing members work in direcl tension or compression

() Regundant strcture
o

a [Fd a
¢ J
* 4 41 5

Ql g
Iy 2 &/

P P

Xq

(&) Simple structure

Fig. 25.9 Fig. 26.9

just as those of an ordinary trass. We shall assume Lhat the cross sections ol all
the reinloreing membors remain constant. The displacement of the two different
parts of the structure will be calculated using expressions peculiar to the type
of stress develoreﬂ in each of theso parts.

Solution, The simsle statically determinate structure will be obtained
by cutting bar 7-2 us indicated in Fig. 25.95. The equation will be of the standard
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form
_Y‘(i“ = .l”, =1

The values of the coefficient &y te the unknown X, and of the free lorm
A will be obtained using bending moment graph for the main heam | Fig. 26.9)
and the values of the normal stresses developed in the reinfercing members.
The unit stress X, acting along the hovizental bar 7-2 will produce a compression
in bath the qneen posts, the magnitude of this compressien in this pacticular
case heing alsy equal 1o unity. These stresses will be transmitted directly to
the main heam. The fllowing table gives the amountg ol stresses in all the bars
of the suxiliary avstem.

Table 2.0

Tar No. 7 ¥ Wi NN X4
Ot a2 3 0 ] 20 V2
1.2 I L 0 0 o
2.3 al/2 ) 0 ] da V2
14 a —1 it 0 "
2.5 @ —1 0 0 a
Tulal = — = 0 a3 41D

The values ol displacements o,y and Ay, are obtained as follows

1 2 B 4 1 : - Had ; a T

_ Pa2 { 2 T . 5Pad
Mp="T77 [ 7 \_:T) wa—ER “]" TRET

Introlucing the latter values into the standard cquation and solving il for
Xy we oblain

p

o3 BJ(84-41V7Z)
TS EFa2

K=

The diagrams of the bending moments acling in the wain heam aad of the
normal stresses in the awxiliary members of the redundant structure will be
abtlained as usual by the summation of the ordinates to the stress curve due to
the applied loads with the urdinates to the unit curves multiplied by the mag-
nitude of X,.

Referring to the different structures appearing in Fig. 27.9 the
tudent will
(1) determine their degree ol redundancy;
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{2) lind appropriate simple statically determinate structures and
choose the better ones;

(3) form the corresponding systems of canonical equations;

(4) trace the diagram of the unit slresses;

{5) compute one of the unit displacements § for each of Lhosc
structures.

Fig. 27.9

4.9. STRESSES IN REDUNDANT STRUCTURES DUE TO
TEMPERATURE CHANGES

[n the ecvent of temperature chauges the standard equations
used in the method ol forces become

Xiday +Xobpa + Xabia+ . .. = X8y + 80 =0)
XBgy+ Xaboo+ Xabog+ ... +XOgn - Ape =0 l

Xibny+ Xobna+ Xabua+ - .- - Xiban+ A =0

In these equations the coelficients &4, 842, . . ., Opn have the same
meaning as heretofore, while the terms Ay, Ay, ..., Ay are
the deflections of the conjugate simple structure along the redun-
danl constraints X,, X, ..., X, caused by the Lhermal
gradient.
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Theze deflections may be obtained using expressions (19.8) and
(200.8) developed in Art. 7.8%

i i
A = S A2 S My da4 2042 ( N, da (19.8)
il g
or
Ap=Zailrg  yyglitho 920.8
mi o A i ’_ [+ ] ..,2.,\;. (—rl )

Equations (7.9) express as usual the idea that the deflections of
the simple determinale structure along the direclions of the clim~
inated constraints remain nil,

ﬁedmda;rt structure
£

a% W Simple structure

T b
g it

Fig. 25. 9 Fig. 29.9

Problem. Determine the stresses induced in 4 one-time redundant striclure
appearing in Fig. 28.9 and trace the curresponding bending moment cwrves
assuming that the indoor temperature rises by 10°C while the outdoor onc remains
unchanged.

Solution. Adopl the simple structure appearing in Fig. 29.9 for which the
standard egnation becomes

Xlﬁ“—{-.r.\u:(] (8.9
Uging expression (20.8) just eited we obtain

10—=0 (anr rm)_a 1040

at
h T 2 ﬂ=—'150’. T—Ecm

A= —a

As for 8y its value will be found raising to the second power the area of the
My graph (Fig. 30.9)

- i ee 2 o 1 _ 463
R i g, S aRT

+
*\We shall admit that the cross seetions of all the elements involved are sym-

5 -t
metrical about the horizonlal gravity axis. Were it otherwise %2 should be

replaced by Iz—i—zi;te y where y is the distance from the fibre heated 1o t, to
the centroid of the cross sections.
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Iniroducing these values into equation (8.9) and solving the same we obtain

X! s 3“ e

8y

Ja 3a
5 — o a8 15 # —_— e
Dot ( 7 | .l) JES l.JaE.J( 7 | 1)

4

PE

4a2

Tho beading moment diagram induced in the given redundant structure by
the given temperalure change can now he obtained multiplying all the ordiuates
to the 37, curve by X,. This diagrum is represeniod in Fig. 31.9.

15aEl(1+59)
—l
ba
= T
o ec
PR,

Fig. 30,9

Fig. 81.9

D9, STRESSES IN REDUNDANT STRUCTURES CAUSED BY THE
MOVEMENT OF SUPPORTS

As already mentioned. statically indeterminate structnres may
becomo severely stressed not only due to the application of exter-
nal loads or due Lo lemperature changes but also in the eveut when

i T £=__ (b3
:-| ,r.f o k Sumple
'i [ hetingn [ A structure
1) Skt T | %
B ﬁ\cj',.,?h' AN
e S b
it fdi VRN
Sremple Setmple
Flructure struglure
A0y ~ -
— X ‘] A f =
| Foe L EZ(
LEN )

Fig. 32.9

one or more of their supports suffer a linear translation, an angular
rotation or both,

Let us study this problem using as an example the portal frame
of Fig. 32.9a. The shape taken by this frame afler the right-hand
supporl has shifted from B to B’ is indicated in the same figure
by dash lines. The horizonlal aund vertical displacements of the
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supporl will be Laken egual to ¢ and b respectively and its angular
rotation to q.

The influence exercised by Lhe simple struclure adopted on the
formation of the standard equations will be investigated uging
the examples of Fig, 32.95, ¢ and d. In the first case (Fig. 32.98)
the dircelions of the redundant constraints coincide exactly wilh
those of Lhe support digsplacements, Thus, the unknown reaclion
X, follows the direclion of the horizontal displacement, Lhe resc-
tion X, that of the verlical one (though being opposite in sign)
while the moment X; aets along the direction of the rolation suf-
fered by the cross seclion al the support. The magnitudes of Lhese
reactions must be such as to render the displacements of the simple
statically determiinate structure exactly cqual to those stipulated
in the problem. Hence the canonical equations expressing this
idea will be of the following form

X8+ X0+ Xgdys=a
X185+ Xglpp + Xybys = — 0 (4.4
Xi0gy 4 Xobys + Xgbsa = ¢

The negative value of the last term of the second equation is due
to Lthe fact thal reaction X, is direcled upwards while Lhe support
moves downwards,

On the other hand, if the simple structure of Fig. 32.9¢ were adopt-
ed it would hecome nceessary to regard (he displacements of the
support B as a syslem of external loads. This would be reflected
by tihe introduction into the canonical equations of free terms
corregponding to the said loads, these terms being designated as
usual by A;., Agx and Ag,. It is clear that these terms will have
the following values (see Art. 14.8)

Ay = a; Aga= —0b--lgy Aza=q

Consequently, the canonieal equations will take the following shape

KBy +Xo8o X8y J-a=0
X 01+ Xpboy + Xy — 04 lg= 0 (10.9)
.’xv.jaai e X2632 -+ X:J'SSS +¢= 0

For the simple structure of Fig. 32.9d these same equations would
become

X8y + Xobpp + Xabyz -+ Aa =0
X182y + X000+ XoOos+ A2a =9 (11.9)
X031 4+ X3Ogs 4 Kby + Asa =0
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Here Aya, Aps and Ay, are the displacements of the conjugate
simple structure along the directions of X;, X, and X, due to the
verlical and horizontal movements of the right-hand support.®

It was shown in Art. 14.8 that these displacements are readily
computed using expression

Xg-__\ia i ERA == 0

in which the lelt part represents the work accomplished by Lhe
forees of the imaginary state along the displacements of the simple
structure due Lo Lhe motion of the supports.
In this case Lhe imaginary state ol Lhe
simple structure permitting the determina-
tion of the angular rotation along X; due
to the displacements of the right-hand sup-
port is that of Fig. 33.9¢. Hence the work
accomplished by the forces of Lhe imagi-
nary state along the displacements of the
simple structure when its right-hand sup-
port is moved hoth vertically and hori-
zontally will be expressed hy

Xidat g at 15=0

wherefrom

: Similarly, the work accomplished by

Fig. 33.9 the forces of the second imaginary state

shown in Fig. 33.95 along the displacements

of the simple structure due to the movements of the same support
will be given by

: 1 L,
s Seatgge—yh=4
wherefrom
a b
Sl

As for Lhe displacement Ayy it will be obtained from Lhe cqualion
corvesponding to Fig. 33.9¢.
7 1
;\3:\3;\'—”?&—0
’

*The angular rotation of the right-hand sappert will produee no displace-
ment of the simple structure along the directions of X'y, X, and X ;.
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wherefrom
a
Bsa=—4-
Introducing these values into eguations (11.9) we obtain

Xiéii =+ X2612+X3|513—— (%-\— -?—) =0 ]

b |

X b2y + Xabag 4 Xaboz— (%"‘T) = (12.9)

|
X 81 - XoBag 4 Xobus + 5 =0 ]

It gshould be remembered that each term of the lelt part of Lhese
equations represents the deflection of the simple statically deler-

(4]
Imagenary
state I
X.=1

——

Fig. 34.9

minate structure along the direction of a redundant reaction n
duced either by this same reaction or by the movement of the
support at B.

All the equations of the present article have heen, thus based on
the principle of superposition. It may be easily shown that Chese
same equations may be based on the theorem of reciprocal works.
Indeed let us consider lwo different states of the same simple
stalically determinate structure, namely those represented in
Fig. 24.92 and b. Using the above theorem we obtain immediately

X0y 4 Xobay + X oy = 1a (13.9

The left-hand part of this equation represents the work accom-
plished by the applied loads of Fig. 34.9a along the defllections of
the imaginary state of Wig. 34.90 while the right-hand part—that
done by the unit load X; =1 of the first imnginary slate along
the actual’ displacement equal to a. '

Fixactly the same reasoning will lead to the formalion ol the
two following equations (Fig. 35.9a and 5)

X1612+X2622 "{‘-X:;(Saz...—.. .——.1b ] jz ’
XSz + Xoboy+ Xabyz=1¢ [ (14.9)
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The lelt parts of these equations represent the work accomplished
by the applied loads along the imaginary displacements induced
by the anit loads of the second and third imaginary slales of
ig. 35.9¢ and b while the right-hand parts—those accomplished
by the imaginary unit loads of the two latter states along the given
displacements of the support.

Comparing equations (9.9) obtained previously nsing the sj mple
structure ol Fig. 32.95 with those bhased on the theorem of recip-
rocal works [equalions (13.9) and (14.9)], it becomes immediately

ol
Imagimary
stote 11 O imagunary
state I
K=l
f X7 b2 ‘() i

Fiy. 359

apparent that the two systems are absolulely identical for §;, =
=gy, 85 = 85 and 8,5 = Hy,.

Nevertheless the basic ideas conveved by these two syslems ol
equalions are entirely different. Indeed, the eguations based on the
principle of superposilion express that the sum of displacements along
the divections of the redundant constraints are either nil or equal
Lo predetermined amounts; as for Lhose based on the theorem ol
reciprocal works, they express that the work onr the simple stali-
cally delerminale structure accomplished by the applied loads
along the displacements of this same structure caused by any one
ol the imaginary unit loads is equal to the work produced by the
said unit load (logether with Lhe support reactions due to Lhis load)
along the displacement caused by the actual loading.

For exercize lel us use once again the theorem of reciprocal works
for the delerminalion of stresses in the same portal frame, adopt-
ing for conjugale simple structure the one appearing in Fig. 36.9q.
The corresponding imaginary states ace given in Fig. 36.95, ¢
and .

‘The slandard equations hased on the principle of reciprocal works
hecom ¢

- b

Xibyy + Xabg + Xa{)m:T{—% ]I

- i : b -
X6 +X2522-1-X3532='P—i-%—-? (15.9)

|
i
X85+ Xabay + Xibgy = —% }
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Comparing the latler set of equations with those derived from
the principle of superposition [equalions (12.9)] we see once again
that they are absolutely identical.

In actual design praclice it is more convenient Lo base the equa-
tions on the principle of reciprocal works when solving problems
connecled wilh the settlement ol supporls, the equations so obtained

fal 11

)
fmagenary fmggunary
stetel! state !
of

}4’— Xz T ;

F G

7 'y

E# 17

Fig, 36.9

affording a clearer piclure of the physical reality. The same meth-
od could be used for stress analygis of redundant straciures sub-
jected to a syslem of external loads, but it would lose the advan-
tage just mentioned, for in the lalter case the principle of super-
position pives a belter representalion of the phenomenon.

6.%. DIAGRAMS FOR SHEARING AND DIRECT STRESSES.
CHECKING OF DIAGRAMS

Once all the redundant stresses and reactions Xy, X,, ..., X,
have been found, one may proceed with the determination of shear-
ing and normal forces acting in the structure wunder consideration.
These will be exaclly the same as those arising in the simple stali-
cally delerminate slructure under the combined action of the ap-
plied loads and of Lhe said redundant stresses and reactions.

The same results may be achieved using Lhe bending moment
curves obtained for the given redundant structure as deseribed in
the previous articles. Indeed let us isolale from Lhe rest of this
structure a rectilinear bar AB and let [ be its length (Fig., 37.%aq).
In the most general case this bar will be acted upon:
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{a) by the loads actually applied within its limits;

(b) by the bending moments M, p and M 5, at the end sections.
ihe magnitudes of these bending moments may be scaled off di-
rectly from the corresponding diagram;

(c) by the shearing [orces Q4 y and Qg4 as well as by the normal
stresses V4 p and V g, developed at the same cross sections.

Tlere and after the first of the two indices will indicate the posi-
tion of the eross section, while both of these indices together will

Aplivd Ly Appiand Jineds
—

ey
Mg 5 M, M, - e
s, 11 T faa , Mag 11 4
o “.:ﬂ_fz_J_uLJHxJai e Mg t ol b, S
X _j 0 A
Gigf~—— !
i l [#
' —

l"":m - 1__ —
A

ir|
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Aopeut Louds
fel 1T ] Gl o Af
IR N wag (7 . i e
; 7
A | I A 1

Fig. 37.9

designate the member containing this section. Thus, M4 p will
mean the bending moment acting at section A of bar AB.

Since the bar AB is in oquilibrium the stresses Q4 p, @y, and
N 4+ may be regarded as the vertical and horizontal reactions of
an end-supported beam appearing in Fig. 37.95, which we shall
call as before the reference beam. It follows that the siresses
acting at any cross section of the said reference beam and those
existing in the corresponding section of the given structure will be
absolutely identical. Flence the bending moment at any cross section
£ of the bar 48 will equal the sum of the bending moments induced
in the corresponding section of the reference heam by all the actions
shown in Fig. 37.9¢ and &

M= MO M+ Mo Man ?‘" ¥

where M? represents the bending moment produced in the reference
. . J —.1
heam by the external loads of Fig. 37.9¢ while M4 & + h‘—“—!—’f‘—” x
is the moment arising [rom the application of moments M, 5 and
M 54 to its end seclions (Fig. 37.9d).
The theorem of Zhuravsky stating that the first derivative of
the bending moment represents the shear in the same cross section
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we may wrile
d¥  dMO | Mpa— M,y Mpi—Man g3
Q=T =F T =022 ({69)
llere QU is the shear induced in the corregponding cross sec-
tion of the relerence beam by the loads directly applied thereto
(Fig. 37.9¢).

The above cxpression permils the determination of the bending
moments and shears in any seclion of a rectilinear member belong-
ing to a redundant framed structure provided the loads direclly
applied to Lhis member and the bending moments acting at the
end sections are known,

When the bending moment curves are traced on Lhe side of the
exlended fibres, the sign of the shearing forces may be ascertained
as lollows: the shear will be reckoned positive if the axis of the mem-
ber must be rolated clockwise in order lo come in coincidence with the
tangent lo the bending moment curve. provided the angle of rolation
is smaller than 90°. Numerically the shear is directly proportional
10 the value of the natural tangent of this angle. This rule presented
in Art. 1.2 permits the immediate determination of the shear sign
for any cross section of bar A B,

The direction of the shearing foree will be obtained remembor-
ing that a positive shear will always tend 10 rotate clockwise the
section it is acting npon about the far end of that same part of the
member.

Normal stresses will be determined isolating in succession each
joint of the structure and applying thereto both the actual loads
and the shearing forces obtained as described above. One could
also use the procedure outlined at the beginning of this acticle.

Problem, Trace the @ and the N curves for the portal frame appearing
in Fig. 38.9 together with the diagrams of bending moments acting in all of its
moembers.

Solution. First trace Lhe shear diagram for column 7-2. No oxteraal lond
being applied to this member, the bending moment diagram forms a straight
line and therefore the shear will remain constant. It will he reckoned negative
for the column axis must be rotated counterclockwise to come in eoincidence
with the tangent to the bending moment diagram (the two coinciding in that
particular case). Numerically the shearing force will equal the natural tangent
of the aforesaid angulur votation, viz.,

10.84-5.4

Qio= Qg = — B

—2.7 tons

The same results would have been obtained through Lhe application of
tlie formula given at the beginaing of the present article

Moyy—M
012=Qz-1==0?a+—2-1mi£

2i—8an
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Seping that no load is directly applied to the column in question, the
shear @!, will reduce to zero and thereforo

Moy — 11‘{‘2= —10.8—(+ 5.4)=

7 o —2.7 5
Q=0 I B 2.7 ton

When computing the shearing forces each of the members should be placed
mentally in o horizontal position; the hending moments reckoned positive
will then produce an extension of the lower fibres of this member and those
reckoned negalive—an extension of ils upper fibres.

g=24t/m

R
&
LAY
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Fig. $8.9 Fig. 39.9

The sheatving ferce in the right-hand column will be determined in exactly
the same way and will equal —2.7 tons.
As for the shear in the crossbeam, its value at any section sitnated a distsnce

z from joint 2 will be given by

M 4% 0 — 10,8 —( —
Mss—Mps _ | 2.4%9 _2'M+MJ +10.8—2.4x
Izs 2 9

When z=0 (that is, immediately to tho right of joint 2)
Qoz= -+ 10.8 tons

and when x—=9 metres (that is, immediately to the left of joint J)
Qua=4-10.8—2.4 X 9= —10.8 tous

The diagram of shearing forces thus obtained is ropresented in Fig. 30.9.

The diagram of tho normal stresses can be dorived cither from that for the
shenrs or alternatively its ordinates may be calculated knowing the reactions
of all the redundant constraints.

Let us determine the normal stresses using tho equilibrium of joints. At first
we may isolate joint 2 (Fig. 40.9) acted upon by the shear Qg3 = — 10.5 tons
developed at the left extremity of the crossbeam and directed downwards,
the shear Qpy = — 2.7 tons devoloped at the top of the column and directed
from left t¢ vight and by the normal stresses Ny and Np {hath reekoned posi-
tive if entailing compression) and acting along the crossheam and the enlumn,
respeclively.

Iquilibviurn considerations yield immediately

Noz=+2.7 tons and Ny =+10.8 tons

The normal stress acting in the right-hand column will be obtained 1solating

joint # and will amount to +10.8 tons.
The complete diagram of normal stresses is given in Fig. 41.9,

Q=0"+
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A convenient method of checking the M, Q and N diagrams
consists in the successive isolation of different parls or joints of the
structure which must always remain in equilibrium. Thus, the
projection on the vertical of all the support reactions of any framod
structure must always equal the vertical component of the resultant
of all the applied loads. Similarly, the sum of moments ol all the
reactions about any point of the sivucture must always equal the
moment about the same point of the resultant of the applied loads.
and so forth.

A rapid check of the diagram of the shearing forces may be taken
comparing this diagram with that of the bending moments: indeed

27t 10 8¢
AL TTERTTTITTI

08¢
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Fig. 40.9 Pig. 4.9

when the moment curve becomes parallel to the heam axis, the shear
must equal zero; when the tangent to the bending momenl curve
remains inclined towards the same side, the shear may not change
sign; its magnitnde will be greater for that secction for which the
slope of the tangent to the bending moment curve is the steeper.

When two bars form a joint, the ordinates Lo their bending moment
cenrves at this joint must always have numerically the same valuos
(provided no outside moments act at this joint) since the bending
moments muost always balance. In the samce case divect and shearing
forces considered separately will not balance, but considercd
together they must form a system of concurrent forces in equilibrium,

However, the control of stress curves based on statics alone does
not provide complete guarantee of the exactitude of all the com-
putations for equilibrium conditions may be satistied even if errors
were committed when calenlating the redundant reactions. Indeed,
the bending moment curve for any redundant structure always results
from the summation of the ordinales to the curve induced in the
simple stalically determinate structure by the applied loads with
those to the curves duc to the redundant reactions and stresses,
If all of Lhese curves were constructed correctly, equilibrinm condi-
tions will remain satisfied even if the values of these reactions and
stresses are completely wrong.

In the majority of cases any errors committed when computing
the reactions of the redundant constraints will be detected checking

7
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that the deflections ol ccrtain points are consistent with the stip-
ulations of the problem. The following example will serve to illus-
trate the above.

Fig. 42.9¢ represents a knee frame statically indeterminate to
the second degree. The computed bending moment diagram is shown

o
[

I s e
e Y

:\_\. Reculling M graph

i) ()

Fig. 42.9

in Tig. 42.9b. This diagram will remain nnaltered should we trans-
form the given structure into a statically determinate one, say, by
olimination of the two support constraints at the lower end of Lhe
column (Fig. 42.9¢) provided these constraints are replaced by their
reaciions.

Let us now compute the vertical deflection AY of the lower end
of the column in order to make sure that this deflection remains nil.
For this pucpose we shall first trace the diagram of the bending
moment induced by a verlical load unity acting at point A
(Fig. 42.9d) whereafler we shall multiply this diagram by the M
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diagram pertaining Lo the given stracture (Fig. 42.95). The result is

AV 1 Lofga? 1 ga® 2Y
N=greoy (r3—5 :-;)_“
et us cheek also thai the horizontal displacement of the same
peint remains equally nil. For that purpose we may multiply the
bending moment graph due to a lorizonlal load unity applied at
this point by the area of the same bending moment diagram as in
the preceding paragraph (Fig. 42.98).
\H 1 (qa” 1 Z2a  gal 2 & ga® 1 qat 1 a)

e e e e L A FEoo v e

Tt T8 el it g

_ J'}ll'."1 1 1 1 1 1 b
=t (p—m+m—m%) =°

Thus, the above method of checking the computed slresses acting
in members of redundant structures congists in the Jollowing:

1. Trangform the given redundant structure into a simple stat-
ically determinate one.

2. Replace successively each of the eliminated constraints by
a unit load or a unit moment as the case may be.

3. Trace for each of these unit actions a bending moment diagram.

4, Compute the deflection of the simple structure along the
direction of each of these unit actiong. The amount of this deflection
will he given by the produet of the ordinates to the bending moment
curve due to the unil action by those to the diagram induced in the
given redundant structuce by the applied loads.

5. It these deflections are consistent with the stipulations of the
problem (nil in the majority of cases) one may be reasonably sure
that all the compulations were carried out correctly.

The simple stalically determinate structure used in that case
need not eoincide necessarily with the one used for the determina-
tion of the redundant stresses and reactions. Different simple struc-
tures may be used for the computation of different doflections of
one and the same redundant structure. Lhus, for instance, the resull-
ing bending moment diagram of Fig. 42.90 could be checked using
the simple structure of Fig. 43.9a for the computation of the hovi-
zontal deflecction of Lhe right end of the crossheam and that of
Fig. 43.9b for the compulation of the angular rotation at the same
point.

One can also use for the same purpose the graphs of Lhe bending
moments due to imaginary unit actions ulilized in the original
computations. In the latter case all that need be done to control
the aceurncy of the resulting diagram is to multiply this diagram
by the former graphs and to make sure that their product remains
equal to zero.
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The control just deseribed is particularly simplified for struclures
forming closed contours or those with built-in ends (which theoret-
ically is one and the samc).

Assmne that it is required to control the accuracy of all the com-
putations pertaining to the multispan frame with built-in columns

1 N
= A

> (a) AN ()]

Fig. 43.9

(Fig. 44.9a}. Let vs isolate a single bent applying at the cuts external
moments and forees equivalent o the internal ones acting at these
cross sections. Obviously the bending moment diagram relating
to the isolated part of the frame will undergo no change whatsoever.

Now let us pass any arbitrary section through one of the members
of the isolated bent, applying once again at the cut external actions

I

L |
| )
M=

i
L)

(e
Fig 44.9

r@_guivaleut to the stresses which existed at this section (Fig. 44.90).
There will be again no change in the bending moment curves perlain-
ing to t!l(:. Lwo portions of the frame. It may be easily shown that
the sections adjacent to the ent will undergo no mutual rotation.
Indeed, let us multiply the resulting bending moiwent graph by
the graph due to a unit moment acting at the cut (Fig. 44.9¢). As
the ordinates to the latter graph will be constant and equal to unily,
the above mentioned multiplication will reduee 1o a simple summing
up of graph areas bounded by the resulting bending moment eurve.
These must be paturally taken with due consideration to their signs
and the sum so obtained must equal zevo.

If the different members of the structure differ in stiffness, Lhe
areas of each graph must be previously divided by the stiffness
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of the corresponding member. Thus, for any structure forming
a closed contour the algebraic sum of bending moment graph surfaces
must reduce to zero, these surfaces being previously divided by EJ
when necessary. As for the sign of the graph areas, those situated
within the contour will be taken with one sign and those situated
outside with the opposite one.

This method of controlling the accuracy of computations is the
simplest. 1f the results obtained are satisfactory, one may be reason-
ably sure that all the computations were carried out correctly.

It should be noted however that this method is inapplicable to
Iramed structures with hinged joints or parts thereof.

Complete certitude that no error has been committed in any of the
computations can be gained only if the number of control operations
carried out is equal to the number of redundant constraints, provided
these operations do not repeat one another.® Thus, for instance, if
the graph areas for two contiguous parts of a structure have been
summed up, the same procedure may not be applied to the same two
parts taken as a whole, for this would simply repeat the controls
already carried out and could therefore furnish no new data.

7.9. STRAINS AND DEFLECTIONS OF STATICALLY
INDETERMINATE STRUCTURES

Expressions (15.8) through (17.8) developed in Art. 6.8 were
hased on the assumptions that the material of the structure follows
Hooke's law and that the strains and deflections of the structure
are very small compared to its dimensions. Hence, theso expres-
gions as well as the corresponding computation techniques can be
applied to all framed structures regardless of whether they are stati-
cally determinate or not.

Let us therefore use one of these expressions for the determination
of Lthe vertical deflection A, of point C located along the neutral
axis of a knec frame subjected to a uniformly distributed horizon-
tal load of ¢ kg per uonit length as shown in FFig. 45.9a. This frame
was analyzed in Problem 2 of Art. 3.9 (sce Fig. 16.9¢). The result-
ing bending moment graph is represented in Fig. 45.9b (see also
Fig. 18.98). In order to find the desired deflection let us apply at
point  a vertical unit load, which will give rise to the bending
moment curve of Fig. 45.9¢.%%

+

*These operations may consist either in the multiplication of graphs or in the
summation of their areas.
**The corresponding calculations are omitted here
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Multiplying the two graphs appearing in Fig. 45.95 and ¢ one
by the other we obtain
A\ [ 40% a 2 32  qa? 2 Jn 1 a 1
A [ T T s 3wz X

(ﬁi.iﬁ.z_i.ﬁ.g_n_ﬂ.ﬁ__i.ﬂf)_,_i.ix
56 1% 7 56 5 56 7 14 2T

a EE‘__ O qn“z, a qa? | Ha  ga? gat
X (—T 56 B IR T TS 565G ]]m T T IABET

The negative value found for the deflection A, indicates that
point € moves upwards, for the load unity was directed downwards.

The procedure described remains rather complicated since it
requires that all the stresses in the redundant struclure should
be computed twice: once for the case of applied loads and once for
the case of the imaginary load unity. This procedure will be great-
ly simplified if we remember that the deformations of the simple
statically delerminate structure acted upen both by the applied
loads and the redundant stresses and reactions will be exactly the
game as those of the given indeterminate structure. Hence, in the
case under consideration the deflection A. may be computed with
equal sucecess either for the redundant structure of Fig. 45.9a or
for the simple statically determinate one of Fig. 45.9d.

Let us apply at point C of the latter structure a unit load fol-
lowing the direction of the required deflection and let us trace the
corresponding bending moment diagram (Fig. 45.9¢). Multiplying
this diagram by the resulting bending moment graph given in
Fig. 45.96 we obtain

() 1 fga® 1 ga® 2y 1 gal
RETER W B (EF?‘E?] ET T T WBSET

Any statically determinate structure derived from the given only
by the elimination of redundant constraints can be used for deilec~
tion computation. It is in no way necessary that this simple struc-
ture should be the same as the one used for stress analysis. Thus,
the deflection of peint € of the knee frame could be obtained just
as well using for auxiliary simple structure the onc shown in
Fig. 45.9f. The application to this structure of a vertical load uni-
ty at point ¢ would lead to a bending moment diagram shown in
the same figure. The subsequent multiplication of this diagram
by that bounded by the curve ol the resuliing bending moments
given in Fig. 45.96 lcads to

ga? a 2 a gqa® 2 a 1 a a
ACI[M 25 % B FtgiThyargX
1 fqu2 2 qa® 1 : gat
X?(Tf. "3 58 ?)]_u =~ Zsn7
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The choice of the auxiliary simple structure should be governed
by the following considerations: the bending moment eurve due
to the load unity must be as simple as possible, this curve must
be obtained with Lthe minimum of computations and the ordinates

Fig. 45.9

to this curve should reduce to zero wherever the outline of the resull-
ing bending moment diagram for the given redundant structure
becomes too complicated. Henee, in the example dealt with prel-
ercnce should bhe given to the simple structure of Fig. 45.9¢ as com-
pared to that of Fig. 45.9/.
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The necessity might arise to determine the deflection sustained
by a redundant structure under a given set of loads without being
interested in the corresponding stresses. In that case one may com-
‘pute only the stresses induced in the structure by a unil load acting
in the direction of the desired deflection, disregarding entirely those
due to the applied loads. The deflection will be then obtained mul-
tiplying the bending moment graph due to the unit load and per-
‘laining to the given redundant structure by the diagram of bending
moments induced in the auxiliary simple structure by the actual
loading. In the previous example the deflection As could be thus
obtained multiplying the A graph of Fig. 45.9¢ by that appearing
in Fig. 45.9g

A [ge® a B 3  qe2 a (3a a Oz y 17,
“\c_[ 2 %0 'T'*'T'T(W__T 2"I_W) wz_]x
gt

1
XEIT T WBET

Thus, it may be stated that the deflections of a redundant siructure
may be determined using only one¢ bending moment diagram pertaining
to the given structure, either that induced by the applied loads or else
that due to a load unity acting along the desired deflection. The second
graph may be traced for any simple structure derived from the first
one by elimination of redundant constraints.

The deilections and distortions of statically indeterminale trusses
and other hinge-connected structures will be obtained in cxacily
the same way with the only difference that the bending moment
curves and graph areas must be in that case replaced by those relat-
ing 1o the normal stresses,

8.9. THE ELASTIC CENTRE METHOD

As a rule, stress analysis of redundant structures requires the
simultaneous solution of several equations with several unknowns,
The higher the degree of indeterminancy the greater the number
of these equations, the harder their solution and the lower the acen-
racy of the final results. It iy quite natural thereforc that attempls
are frequently made to form the above equations in such a way
that cach of them should contain one unknown only, or, allerna-
lively, that the system of these equations should fall into scparate
groups each containing a reduced number of unknowns not enlering
the other groups.

The system of equations pertaining to a structure redundant
in the second degree is so simple that it is obviously senseless to
seek any forther simplifications even il such were possible.
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Passing to structures indeterminate in the third degree let us
investigate the possibilities of simplifying the analysis of a closed
conlour of arbitrary configuration such as shown, for instance,
in Pig. 46.9a. Having eliminaled the constraints at the left-hand
abutment and having replaced them with threo unknown reactions
Ay, Xpand X, as indicated in Fig. 46.9, we should normally form
three standard equations with three unknowns.

In order to avoid the simultaneous solution of these equations
let us fix to the free end of the simple structure an infinitely stifl

\P

Redundant structure
\p fal

Simple structure
-,

b

Fig. 46.9 Fig. 47.9

bracket ab, hoth the length aund the dircetion of which remain as
yet unknown (Fig. 47.9).

At the free end b of this bracket let us apply at right angles two
forces Z; and Z, (the direction of these forces coineiding with that
of a new set of coordinate axes u and v) and a moment Z,.

1f the magnitude of these actions were such that they would
immobilize completely the end & of the bracket, preventing hoth
its rotation and translation, the left extremity of the simple struc-
ture (point a) would also become fixed and Lhus from the view-
point of their deflections the given redundant structure and Lhe
simple structure of Fig. 47.9 would be in the same conditions.
In other words, the structure of Fig. 46.9a and that of Fig. 47.9
acted upon both by load P, the forces Z; and Z, anid the moment
Z, would be equivalont,

The system of equations expressing that the end b of the bracket
is held fast is as follows

Z8yy 1-Z383 +Zdiz+ A =1}

Z18gy+ ZoBas + ZsOaa+ Bop =0 (17.9)
22‘531 -+ 22632 = 23'533 55 A}lp =)
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It will he remembered that the coefficientls §;, entering these
equalions represent the displacements of the free end of bracket
ab induced by load unities following the dircclion of the nnknowns
Zi. Za and 23.

The magnitude of these displacements depends, of course, both
on the size of the bracket and on the direction of the axes u and v.
Let us choose these parameters in such a way as to render nil all
the secondary displacements of point b. lu that case each of the
above three equations will contain only one unknown, these equa-
tions reducing to

’, a!p

]
Ay

Zy=—2 (18.9)
A

Zs: — a‘:{:

liet us express mathemalically the conditions governing our
choice of the aforesaid parameters. Denoting by « and v the coor-
dinates of an element ds of the given structure (see Fig. 47.9) we
may write
4

R——

3 TIY .
1512='S'”E}!2 ds == v;;‘s:u

0 0

ET1T3 lb"]ds
61,123 E7 dSZS T =0

o

i

623 - g Moy . S u}:'fds i
0

ug=l
L]
1 d.
5
P o— =
Yoigt
0
: d.
53
S UE—:}.——_O
0

It is fairly ecasy to find a geometrical interpretatlion to the con-
ditions thus expressed. Indeed, let us subdivide the whole of our
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structure into elemenls ds and let us apply al the centre of gravity
of each of these elements an imaginary load i—s. In that case the

first two of the above integrals will mean that the statical moments
of these imaginary loads about the coordinale axes w and » having
for origin poiut & arc nil. That will happen only when point b coin-

cides with the centre of gravity of loads f;- . The third of the integrals
means that the polar moment of these same loads aboul point &

Fig, 48. 0

is equally nil, this becoming possible only when the coordinate axes
coineide with the principal axes of inertia of Lhe system.

It follows that all the secondury displacements of a structure redun-
dant in the third degree and jorming a closed contour will reduee to
zero provided the new origin of coordinate axes is brought in coincidence

; 2 ds 5 3 .
with the centre of gravity of the imaginary Ioad.s-—",—, and the direclion

of these ares—with that of the principal axes of inertia of these sume
loads, 1f the given structure is symmefrical, the principal axes of ineriia
will coincide with the axes of symmetry.

The origin of the new coordinate axes may be determined using
formulas provided by theorctical mechanies: Lthus, using the nota-
tions of Fig. 48.9 Lhe position of the cenlre of gravity of Lhe loads

-‘j—s will be given by

L i
b s S ds
&L a— sl
E: . 0 y 4
Ly = ——— o ——5—— (19.4)
i ds ds
§ 7 V7

0 0
In cach case the numeralor represents the sum ol the slatical

5 . ds ¥ .
moments of the imaginary loads v about some axis of coordinates

(the summation being carried over the whole length of the contour),
and the denominator cquals the Lotal of these same loads.
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The angle formed by the principal axes of inertia with the z-axis
is given by the following formula developed in the treatises on the
strength of materials

20
tan 200 = — -0 20.9
Jrc_‘flfc ( )
where
l‘ 4
J:rgm;:- -'F‘.:.f/c—}'
0
1
Jo=S 1t 5 (21.9)
1]
: d.
a %
]

4

The imaginary loads E} are sometimes called the clastic loads

ar masses and the centre of gravity of these clastic masses—the
elastic centre of gravity or simply the elastic centre.

It is not always advisable to resort to the method just deseribed.
Thus, for unsymmetrical systems the amount of work required to

1.4

Fig. 49.9 Fig 30.9

determine the position of the new coordinate axes may become so
important that it will outweight completely the advantages gained
from the simplification of cquations.

However, il the structuro is endowed with at least one axis of
symmetry it may be stated off hand that the method ol the elastic
cenire will yield tangible results. Some examples of such structures
are given in Fig. 49.9.
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Problem. Determine the position of the elastic centre for the fixed end arch
of Fig. 50.9. The neulral line of this arch follows a conic pavabola given

4 - .
by y == g- (! — z) z and ils cross-sectional momenls of inertia vary inversely

Lo COR Py
J
= s
COS Gx
where Jy == moment of inertia of an arhitrary cross section whose abscissa

equals
Jo = moment ol inertia of the cross section al the crown of the arch
4. = angle formed by the tangent to the neutral line of the arch at point
z with the axis of abscissa.

Solution. Start with determining the position of the elastic contre with
reference to the coordinate sxes zoy (Fig. 50.91. Owing to the symmetry of the
structure both as regards its dimensions and the stiliness of its cross seclinng,
one of the coordinate axes is known off hand: il is vertical in direction and
passes through the crown, Therelore, the abscissa of the elastic centre zp equals

e As for the ardinate it will be found using expression (18.9) and rememboring
that

5 A JS
ds= and fx_m
hence :
P 4f . dz
\ri-a:5
0 2
= 1 =Fi
i
e 8
0

9.9. INFLUENCE LINES FOR THE SIMPLER REDUNDANT
STRUCTURES

The constrnction of influence lines for redundant structures may
be carried out using both the statical and the kinematic methods.

% X—.—I a:f x —l P/
Z

fart H {\l._J %—;{——\
) R e T = I 4
}_.. —— ]

el §lructer

Fig. 51.9

Let us compare both these methods using as an example the beam
of constant cross section appearing in Fig. 51.9a. The influence line
for the right-hand abutment reaction will be obtained using as simple
statically determinate structure the one shown in Fig. 51.96. The
standard cquation expressing that the deflection of the latler structure
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aloeng X, is nil becomes

X646, =0
wherelrom

i — (22.4)

_'ﬁ[‘he deflections 6,y and 8y, will be derived from the 47, and the
M, diagrams, the first of Lhese diagrams being due to the application

: E | T oS,
T B erear oty e T &
] Ma gt ] ﬂl T
o e iy
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T {\'?"l ) M, grdpn
ial ]
B!

Fig, 52.8

of a load unity along the direction of Xy and the second — to tho
application of load P =1 a distance z from the wall.
These diagrams appear in Fig. 52.9a and b.

Henee ||
o ﬂ'ﬂl-—:. i €2 {3l — 1)
AT 3 EJ 2P
and
BB 2. 9 . B
R A T
Introdueing these values in expression (22.9) we obtain
Y. — _ bp 2 @i-n3R)  r2(3l—2)
I S BRI : 213

The above expression gives the value of reaction X, for any posi-
Ltion of the load unity P along the beam and therefore the graphical
J represenlation of this expression will con-
._"__r” gtitnte the influence line for the said reac-

tion,
t‘\_f. ! 573}72 Table 3.9 gives lhe ordinates to this
W influence line al quarterspan  increments
Inflaence line computed using the above expression for Xy.
for X The influence line itself is represented in
Fig. 53.9,

Next, let us take up the influence line
Fig. 53.9 for the shear Q. acting at midspan of the
same beam. DBased on the principle of

superposition the magnitude of Lhis shear will be

Qc = Qb+ QcX, (23.9)
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Table 5.9
) x2 KIEEES X
0 0 31 o
i & 1, 4
4 16 4 128
L ) 5, 5
3 Z ) 16
By LI 9, Bt
4 16 4 128
I 12 21 1
where
Q& = shear at midspan of the simple cantilever beam due to load

unity P
Qc = shear at the same cross section due to the abutment reaction
Xy = 1. The value of Q; remains constant and equal to
—1 (Qc = —1).
As for Q¢ when the load unity P is to the right of section C
Q=1
and when it has shifted to the left of this section
Q=0
The influence line for QF is shown in Fig. 54.9.

The value of the last term of expression (23.9) for any position
of load unity P is equal to the abutment reaction X; multiplied

Pel

g_'z . ;__,_,;_4_ _j_z_fx.

¢

d__;_..l_‘_%__l influeree Line for 3. X,
H i [}
HISTS

Infiuence Lire for G2

Fig. 54.9 Fig. 55.9

by (—1). The graphical representation ol this relation is given in
Fig. 55.9. Adding the ordinates to the influence lines for QF and

for Qg X, we obtain the influence line for tho full shearing force
Q¢ acting across seetion € of the redundant beam (Fig. 56.9).

%8=8538
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The influence line for the bending moment at midspan of the same
beam will be obtained in a similar way. Indeed, this hending moment
is equal to

.ﬁfg = Mt"—;ﬁ ﬂ"I{__IXl
where
MY = bending moment at cross section € of the simple canlilever
beam induced by the load unity P

A c
{ { [ ]
Tk e e |
Influence Line for MY

[ z

faftuence tine fur F.X

_.-..-,mlllima!

Mo = bhending moment at the same cross section but induced
by a unit load acling along the direction of X¢; the value

of this bending moment is constantly equal Lo —j—

The influence lines for M as well as lor M X, are represenled
in Fig. 57.9. Adding their ordinates together we oblain the influence
line for M (Fig. 58.9).

The method just described is based on considerations of equilibri-
um alone and therefore it may be lermed statical.

X (Pt

3 & ¥
Influence line for Ma _
AT
: NI

.1
4

k
(P44 . ; 2
675 “ i
Fig, 58.9 Fig, 59.9

Let us replace now the dehection 8,, in expression (22,9) by 6,

as provided for by the thcorem of reciprocal deflections. We obtain
Bp1 £

X.] = __61_1 (2[.9)
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Though &,, and 8, are always numerically equal they convey
vory different ideas. Indeed, 8, is the deflection of a fixed point
of application of the force X, due to a unit load P travelling along
the beam; at the same time 8, is tho deflection at the point of appli-
cation of a load P travelling along the beam, caused by a load unity
acting along the direction of X . Hence, the variation of §,, repre-
sented graphically will constitute at a certain scale the elastic curve
of the beam subjected to the action of a load unity applied along
the direction ol X,. However, if we divide all the ordinates to this
curve by a constant factor equal 10 {(—8;,) we shall obtain the ordi-
nates Lo a graph representing the variation of X, when load unity
P travels along the beam. By definition this constitutes the influence
line for X,.

It follows that the influence line for Xy will have the same shape
as the elastic curve of Lthe simple statically determinate stencture
loaded by a unit action following the direction of that unknown.
In that case {—&;) becomes a scale faclor permitting the conver-
sion of the ordinates to the deflection curve to those of the desired
influence line.

This particular method of influence lines construction shall be
termed hercafter ithe kinematic method.

For comparigson, let us take up again the beam of Fig. 51.9%
and construct the influence line for the abutment reaction Xy, using
the kinematic method based on equation (24.9).

The deflection curve 85, will be obtained by the graph-analytical
method of moments, which is usually described in all the treatiscs
on the strength of materials. In essence this method permits to
replace deflection computations by those of bending momenls aris-
ing in an imaginary beam carrying an imaginary load distributed
in accordance with the diagram of the bending moments existing
in the real beam. The ordinales to the imaginary bending moment
curve are then divided by EJ. Such an imaginary beam with a load
distribution corresponding to X; = 1 is represented in Fig. 59.9.

The magnitude of the bending moment (divided by EJ) in any
¢ross seclion of Lthe imaginary beam situnaled a dislance » from its
left end will be

2 {(I—x) = .r) I
B

e
bu=—(7 3o+ 7" 5
wherefrom
2}
8ot = — g7 (31—2)

The value of §,, obtained by the kinematic method coincides ox-
actly with that of &,, derived from statical considerations. The
negative sign indicates that the force X; will cause the beam 'of

28%
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Fig. 51.9b to deflect upwards, whereas we have convened to reckon
the deflections positive when their direction coincides with that
of their cause, i.e., load P which is directed downwards.

The value of §;; will be obtained raising to the second power
My graph (see Fig. 52.96)*

Hence the equation of the influence line for reaction X; becomes
‘5pi 22 (3 —2x)
L
This equation is exactly the same as the one obtained previously
by the statical method.

The kinematic method may be used with good results for the
construction of influence lines for internal stresses acting in the

Xy= —

Right-band

P=l Xp=Me

.

3 N

? /\\. !

i L i 2

T z 1 z .
Fig. 60.9 Fig. 61.9

members of redundant structures and in particular for the con-
struclion of influence lines for bending moments and shearing forces.

Thus the influence line for the bending moment could be ohtained
by the method just described adopting for redundant reaction the
bending moment M, acting at midspan of the simple statically
determinate structure of Fig. 60.9. The equation expressing that
the mutual rotation of two contignous scclions to the right and
to the left of the hinge remains nil becomes

Xbys+8p=0 or X5+06p=0
wherelirom
y 6]-,1
s
Consequently, in that case the influence line for the bending
moment at midspan will have the same shape as the deflection line
’

*The value of 8y may be derived [rom that of ;¢ substituting I for x and
changing the sign, [or the load unities Xy and P aro directly opposed.
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of the simple structure adopted when acted upon by a unit moment
applied at this same cross section.

The kinematic method permits the easy determination of the
shape of the influence line for any action, this shape being the same
as that of the elastic curve of the corresponding simple structure
loaded by a unit force or moment. This analogy can be of consider-
able value both in checking the accuracy of influence lines obtained

wil
7 ;
Tangent X L
98!? X}-:} 7 1
{a)
LN 1 7 =
Xy=1 7 M
) \]\—l Tanigent ﬁ. ! -
[N S P SN < — 1 2 = )i';-?
Ry z (8)
Tig. 62.9 Fig. 63.9

by some other method and in seeking those parts of the structure
which must be loaded in order to provide for maximum or minimum
values ol the desired stress.

When using the kinematic method for the construction of shear
influence line the connection between the right-hand and the left-
hand portions of the beam may be represented by three bars as
shown in Fig. 61.9. The stress developed in the vertical bar will
have cxactly the same value as the shearing foree at the same cross
section.

The simplo statically determinate structure loaded with wunit
forces X; permitting the construction of the @, influence line ap-
pears in Fig. 62.9, and the cquations negating the existence of
a mutual displacement of two cross sections contiguous to C along
the line of action of X, arc of the form

Xidyy+81p=0
wherefrom " ;
et B ip ; it i
= 3 O i 34y

Thus, the influence line for the shear at section € will again fol-
low the shape of the deflection curve of the simple structure acted
upon by the load unity X,.

At points immediately to the right and to the left of section C
both branches of this curve will have parallel tangenis, for the
horizontal connection bars preclude the possibility of a mutunal
rotation of the sections in question.
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The right-hand part of the beam (sec Fig. 62.9) is subjected to the
action of a load unity X, tending to rotate it in a clockwise direc-
tion (Fig. 63.9a). To maintain it in equilibrium the moment deve-
loped by the horizontal bars must act in an opposite direction
and therefore the top bar will be extended and the lower on¢ com-
pressed (Fig. 63.9¢). The same reasoning applying to the lefl-hand
portion of the beam (Fig. 63.9b), its top fibres will also be exlended
and the lower compressed.

The deflection graphs 8, necessary for the consiruction of influ-
ence lines by the kinematic method may be obtained using any

Fig. GL9 Fig. 65.9

of the procedures described above and in particular the one we have
called the method of elastic loads (sce Arts. 11.8 Lo 13.8).

The kinematic method may be conveniently used for the construc-
tion of influence lines for stresses or reactions at the supports of
statically indetlerminate trusses. As an example, let us take the trnss
redundant in the first degree appearing in Fig. 64.9. The cross-
sectional areas of all the members of this truss are the same. 'Fhe
correspogding simple slatically determinate structure is given in
Fig. (5.9,

The standard equation showing that the displacement along the
line of action of the redundant constraint X, is nil takes the shape

XISH + 611! =0
wherelrom

by by

The variation of §,, when load unity P travels along the lower
chord of the truss will coincide with the deilection curve of the same
chord of the simplo structure subjected to the action of a unit load
X,. The ordinates to this curve at all the joints have been compuled
in Art. 13.8 using the elastic loads method, and the curve itself
is represented in Fig. 45.8. All these ordinates are negative [or nnder
the action of X, the lower chord tends to move upwards while load
unity P is directed downwards. The influence line for X, obtained
by dividing the ordinates to the §,, curve by (—8,,) is represented
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in Fig. 66.9. Thus, this influenco line will differ from the deflection
curve ol she simple striuclure only by a constant factor equal Lo

(_61_) . As for the value of this factor, it will be vasily found by
7
sc.alit:g off the value of 8, at the point of application of the load X,.
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Once the influence line for the reaction at the redundant support
has been found, the stresses in all the members of the truss will
be readily obtained wsing the well-known expression baged on Lhe
principle of superposition

A‘r,;ZNip—-l'ﬁgXl
where N} = stress in bar ¢ resulting from the application to the
N simple structure of the actual load

N = stress in the samc member resulting from the appli-
cation to the same slructure of the unit Joad X,.

4432 203z

Fig. 69, 8

It follows that the influence lino for the stress &; may be obtained
by the snmmation of the ordinates to the two other influence lines,
that for N7 and that for N,X,.

To illustrate the above, lel uns constrnet the influence line for
stress Lo; acting in one of the lower chord members ol Lthe same
truss (see Fig. (4.9).
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Using the expression just mentioned we may write
L33=L§+mei

In order to obtain the influence line for both terms of the right-
hand part of this cquation let us pass section 7-/ as in Fig. (7.9.
Assuming that load unity P is to
P LA L L T the right of this section, the equi-
« librium of the left portion of the

trugs requires that
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il sl fluence line for Lf will be obtained

§ 3 35 : setiing off along the vertical pass-
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L} § 4 g necting this point with the point

e IO, T of zero ordinate over the right

abutment, The left-hand portion

Fig. 70.9 of the same influence line will be

drawn remembering that the two

always intersect in the vertical passing through the origin of moments.

The completed influence line for LI, pertaining to the simple
structure of Fig. 67.9a is given in Fig. 67.95.

This same influence line shows that the stress induced in bar 2-3

by tho unit load X, will equal — %

Multiplying by this faclor all the ordinates to the influence line
for X, given in Fig. 66.9, we obtain a graphical interpretation
of the variation of L,3X, or, in other words, the influence line for
the second term of our equation (Fig. 638.9). Summing up the ordi-
nates to the influence line for LE with those to the influence line
for L, X, we obtain the influence line for the stress developed in
bar 2-3 of the redundant truss. This influence line appears in
Fig. 69.9.

The influence line for the stress D3, obtained by the same proce-
dure is shown in Fig. 70.9.



10. CONTINUOUS BEAMS

1.10. THEOREM OF THREE MOMLNTS

A conlinuous beam is a statically indeterminale multispan bewn
on hinged supports. The end spans may be cantilever, may be froely
supported or built in. At least one of the supports of a continuous
beam must be able to develop a reaction along the beam axis.

Fig. 1.10a represents several spans of a continuous beam carry-
ing an arbitrary system of vertical loads. The supports will be num-
bered from left to right 0, 7, 2, 8, ..., n—1, n, n+ 1, elc.
and the included spans will be designated by I, s, ;. . . .. Ly oy, Lo,
{n 41, 0le., the index of each span coinciding with that of its right-
hand support. It will be assumed that the moment of inertia remains
constant within each span, but may vary from one span to the olher.

A conjugate statically determinate system for a continuous hewm
may be obtained by elimination of constraints considered as redun-
dant which prevent mutual rotation of two coniiguous sections
over the supports or putting it otherwise, by the introduction of
a hinge at each of these supports as indicated in Fig. 1.10b.

The equation, expressing mathematically that the angles of
rotation of the aforementioned sections over the supports one with
respect to the other remain nil, will be of the following form

. X.rp—zén., n-2 'I‘ Xn—-tﬁn, o | + Xnén. n +Xra+1'5n. n+i _I"
L X:wzan, S R - Anp =0 (110)

The coefficients to all the unknowns as well as the free torm will
be calculated with the aid of diagrams of the bending moments
induced by unit couples acting along the direction of each redun-
dant constraint (Fig. 1.10¢, d, e, f, g) and of that due to the actual
Joads (Fig. 1.10k), all referred to the system of end-supported con-
jugate beams.

ThUS, the cocfficients au. u=21 an. n—1» 6:1. ot 6:1, n+tls 6.-1, nt will

be obtained multiplying the A, diagram (Fig. 1.10¢) by those
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for My-p. M.y, M,, M,y and M1, (see Fig. 1.10c, d, e, f, g)
611,:;—'3:0

| Lo % o i
On, -1 = EJ, 1‘?' 3 '1_6151,,_
14 4 2 t By 9 )_ 21, 2
6""'_Efn[1' 2 3‘1)'1"1.»:.!,,“ (1' 3 g1 TBET, T GES
= 1 In-H )___ IJ'il+l
B, ~ ETp (1' 233 o J= GETpiy
(Sn.uw'—”o

Mence, all the coefficients Lo the unknowns in equation (1.10)
with the exception of the coelficients 8,, 1, O, o tnd 8, 4y re-
duce to zero.

The multiplication of the M, graph (Fig. 1.10¢) by the 17, graph
(Fig. 1.10&) yields the following value lor the free term of the above
equation

1 1
Ari._p = E7n Qe:yn 'IJ'EJR_” Qrwiylrnl

In this expression &, and Q, 4, arc the areas of the M), diagram
over the £, and the [, ., spans (see Fig. 1.10%), while y, and y, 4,
arc the ordinates to the M, graph measured over the centroids
of Q, and Q, 4, respectively.

From Fig. 1.10e and & we draw

@ [
and accordingly
1 Qnig 1 'Qu-ﬂbn-{—l

Anp= .
2 £y In EJnyy [

Designating Q,a, by Sﬂ’:n_i and Q4.0 by S;‘;’_,..,,,‘H we obtain
finally

oM SM
‘1'.1,|l'|—1‘v -1, n+4- 4
ETnln ' EJdniilngg

where S5, ,—; = static moment of @, aboul the vertical passing
through the left-hand support of span [,
Sa 41, n+s = slatic moment of ©,.+¢ abont the vertical passing
through the right-hand support of span 1,4,
The signs of these static moments will be the same
as those of the corresponding graph arcas.
Substituling the values thus found in equation (1.10) and col-
lecling the terms we find

An.p =

v A
in v in Ini1 ) x Inyy - GS:I. n-{ Gb“"'l-”‘*i
K-y P FiE (Tf: + Tapg ) T T T T e e
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As the unknowns X,_y, X, and X, ., represenl the bending mo-
menls at the supports of the redundant beam M,_;, M, and M, 4|,
respectively, the above equation, universally known as the equation
of three moments, will take the following form

Moy 74 2Mp (5L ) o Moy L =

Tnat Tniy
s gk M
. _mb'sﬁ.ﬂ—l_ hbﬂ+!,n+l {2 10)
in-'rn er—l‘ n+d ’

1{ the cross-sectional areas of all the spans of the beam remain
constant, i.e., if Juo=Jny=Jn=JIns = nsa ttc., the equation
of three momenis becomes

(i E L A
J}!n—-lfr; + 2}1{:!1 (l,; + Z’H—l) _1" Jq'_fr¢+l":n+l Sl }I‘ a-! = e i11ﬂ-l (3' 10)
n Fim

The right-hand part of equation (3.10) is equal to six times the
imaginary reaction R, which would arise al the nth support of
the conjugate system of end-supported beams if the spans contig-
uous Lo that support were loaded with the areas of the bending
moment diagrams due to the actual loads acting over these same
spans (see Fig. 1.10k). 'This reaction will be reckoned positive when
the loads just mentioned cause an extension of the lower fibres of
the beams. Equation (3.10) becomes then

Myly+2Mc (I —1x) L Mylp - —BRE (4.10)

where M, M., and My stand for the moments over the left-hand,
the central and the right-hand supports, ¢, and Il [or the length
of the spans to the lelt and to the right of the central support, and
RL for the imaginary reaction of the central support. All the three
equations (2.10), (3.10) and (4.10) are known under the name of
equations of three moments. Lach of them expresses the idea that
the mutual angular rotation of two adjacent cross sections over
the nth support is nil. Therefore the equations relate particularly
to this nth support.

Al the same time each of these equations establishes the relation
between the bending moments acting over three consecutive sup-
ports of the continuous beam. The number of such equations that
can be written for a beam, all the supports of which are hinged,
will be exactly equal to the number of the intermediate supports.
The simultaneous solution of these equations will yield all the values
of the unknown bending moments at these supports.

The system formed by all the equations of three moments consti-
tutes a particular form of the system of canonical equatioms. Its
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great advantage resides in the fact that it necessitates neither the
construction of unit moment graphs nor the computation of the
displacements caused by the unit actions and the actual loads,
simplilying thereby very considerably the analysis of continuous
beams.

When all the moments at the supports are known one may proceed
with the determination of bending moments within the spans,
of the shears and of the reactions developed at each support. These
computations will be carried out assuming that each span is simply
supported al ite ends and is acted upon
bolh by the applied loads and the moments P
at the supporls just determined. The fol- T st
lowing expressions will be used

|
Ir———d
M= MO My 4 MMt 540y X-l

tn ﬂzr' a,
Mp—M o
0=0Q% +——2—f;1—'n—-'1* (6.10) in ] bni
where z is the distance from the left-hand @ graoh
support of this span. These same expres- o
sions may be used for the construction of H-DTHLF 11
the corresponding diagrams. e
The support reactions D, will be deter- i, n-1 Qnaer
mined as follows: isolating an infinitely Fiv. 2.10
small element over the support under con- B =

sideration from the rest of the beam we
see that the left face of this element is acted upon by the shear @,
while its right face by the shear Q,,,+1. Such an clement is rep-

resented in Fig. 2.10a. Projecting on the!vertical all the forces
acting on this element we obtain

On. n-1 + Dn"‘“Qn.ml =0

wherefrom

Dn=0n, n+l—Qn,n-1 (7.10)

In the above expressions reactions D, are reckoned positive when
directed upwards.

Thus, in a continuous beam the reaction at any support is equal
{0 the difference between the shears acting over two contiguous cross
sections located both sides of the support under consideration. Hence
the numerical value of this reaction will be equal to the rise or to the
fall in the shear diagram over the corresponding support (Fig. 2.100).

The same reaction D, may be obtained if both spans meeting
over the support in question are regarded as simple end-supported
beams (Fig. 3.10), these beams being acted upon both by the actual
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loads and the momenls at the supports already determined. In
this case reaction D, will be given by the sum of D, ; developed
at the right end of the left-hand beam and of D, developed at the
lelt end of the righl-hand beam or, in other words

DuZDrlL't“DnR (810)
in this expression
= 0 Mp_s — Mg
Dre =Dt =, (9.10)
D.op=D" abe Mpyy—Mp
nn nR **_""_IRH

where D3, Dfp and D3y are the reactions at the common supports
ol bolth beams due solely to the action of actual loads, the bending
momenis at the supports being disregarded.*

Applied Loode Agntiea longs
LSRR A g —_—
AN R R
N )
) 1 3 1 -
,-._3"'7/97.- " v = == 9 B R
- " "
I
PP
Fig. 4.10

Introducing the values given by expressions (9.10) in equalion
(8.10) we obtain
Du ey D;;L '-I“‘ D;n—'—ﬂfﬂ_l_ﬂfﬂ _11rfn+i—z1.lrn
In lnyy

Both formulas (7.10) and (10.10) permit the computalion of all
the support reactions of the continuous beam when the moments
at the supports are known. The reaction at the support ol a canti-
lever-end span will be delermined using expression (7.10) or, in
other words, computing the difference between the shears acting
on bolh sides of this support. It will he remembered that the shearing
foree acting at the support of a cantilever beam is always equal
1o the projection ol all forces acting on this beam in the direction
normal lo its axis,

¢

*The magnitude of D, and D, could also be deduced from the equilib-
rium 0f the end-supported heams just menlioned,

(10.10)
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l.et us now examine the continuous beam appearing in Fig. 4.10a
when the length of the left-end span of this beam reduces gradually
to zero. In thig case the langent 1o the elastic curve at the leflt-
hand support will also tend towards the axis of the beam (Fig, 4.100),
which indicates thal the cross section over support I will suifer
no rotation whatsoever. This means that the end of the heam appear-
ing in Fig. 4.10a becomes lixed when the length I, of ils end span
lends towards zero (Fig. 4.10¢).

It Tollows Lhat fhe analysis of continuous beams with fized ends
may be carried out using the same equation of three moments, provided

(0
Tangent | 2 — 17
= 1
=0/ ;
(c) Al |

Fig. 1.10

a buill-in end is replaced by an additional freely supported span of
zero length.,

Coneluding we may recommend the following sequence of oper-
ations lor the analysis of continuous beams:

1. Trace a schemalic drawing of the beam indicating all the
applied loads. If one of the end spans of the beam is built in, replace
the huilt-in end by an additional simply supported span of zcro
length.

2. Number from lelt Lo right all the supports as well as all Lhe
spans.

3. Wrile for each inlermediate support of the beam an equation
of three momenls.

4. Proceed with the simultancous solution of all these equalions
obtaining thus the magnitude of all the bending moments at the
supports (except the end ones which remain zero).

5. Determine the bending moments and the shears along the
spans using expressions (5.10) and (6.10) thus obtaining all the data
necessary for the construction of stress diagrams.
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§. Compute all the support reactions using expressions (7.10)
or (10.10).

7. The accuracy of the diagrams obtained will be checked using
one_of the methods described in Art. 6.9.

rroblem 1. Trace the M and @ diagrams for a continuous beam of constant
cross section represented in Fig. 5.10a.

el
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Fig. 5.10

Solution. Construct the My diagram regarding each span as a separate
cad-supported beam (Fig. 5.1056) and form for support I the equation o three
moments, Expression (4.10) leads to

Moiy+2M (3 + 1)+ Mlp = —6R]
The beam being symmetrical and symmetrically loaded, the moments over

supports 7 and 2 will have the samo values, which means that M, = M,.
In addition wo have My =0 and I, = = L
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Hence
Bl = S . _I,_ 4 :ﬂ
4 4 22 16
and eonsequently
apiz

2M M= s

wherefrom

3
M=M= ___4_‘31_

Both bending moments M, and M, thus obtained being negative, the Lo
fibres nver the supports will be extended and the bottom ones compressed.
In order to construct the bending moment diagram let us determing now the
moment at load point P using formula (5.10)

__3P£__(___3_PIJ
w, -2t _ 3P, 40 o) 1 _n
LT e l 2 4D

Knowing the values of the bending moments at the supports as well as that
of the moment at the middle of the central span wo can proceed with the con-
struction of the bending moment diagram for the whole beam (Fig. 5.10c).

At the same time oxpression (8.10) permits the calculation of shearing forces
al all the cross sections of the beam.

Thus, for the span 8-7 we find

_ 3P .
40 3P
Qu==04—— "y

and for the span 7-2 we have belween support 7 and the load point

—3Pi ( 3P
P 0 \TT@ ) :
U™ I B 3
The ahove dala are sufficient for the construction of the left half of the shear
diagrum appeaving in Fig. 5.10d. This diagram being symmetrical, its right
half will he obtained immediately. The reactions at the supports will he given
hy expression (7.10)

3p 3p

Dy=Dy=— 5 —0= ——
P 3P 23P
Dy=Dy=—— (_W) =S

Fig. 5.10¢ represents the given beam together with all the loads and reactions
acling thereupon. It is obvious that the whole system is in equilibrium.

Lot us check the accuracy of the M diagram which must provide for deflections
consistent with the stipulations of the problem. Since the hoam and the load
distribution are symmetrical, the angular rotation v, of the cross section at load
point must equal zero. The value of this rotation can be obtained eliminating
supports 2 and 2 and applying to the simple statically determinate system thus

208543
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obtained a unit moment at load point P. The bending moment diagram due
to this unit moment appears in Fig. 5.10f. Multiplying this graph by the beuding
moment graph due to the actual loads and reactions (Fig. 3.10¢) we obtain
1 arr 1 2, TP arly 1 1
"P“Tﬁ[_ %0 'l-_;.'?l“'( X T )‘Z‘T‘]“
piz 7 3
—g0e7 (—1H+g—7) =0

which indicates that all the computations were carried oul accurately.

Problem 2. Construct the A and Q diagrams for the continuous beam appear-
ing in Fig. 6.10a; the cross-sectional areas of this beam vary from span to span.

Solution. The schematic drawingl of the beam with its built-in end replaced
by an additional span of zero length and all the supports and spans duly num-
bered from left to right appears in Fig. 6.10b. The terms of the right-hand part
of the equation of three moments will be derived from the diagrams of the bhend-
ing moments due to the actual loading, considering each span as a separate
end-supported beam (Fig. 6.10¢). The diagram for the cantilevering end will
be constructed in the same way as for a simple cantilever bheam.

The bending moment M; heing equal to —5 ton-metres (see Fig. 6.10¢),
the only two unknown moments are those at the first and second supporis
{8, and M), The equations of three moments for these two supports are

M oA
Jlfuzl = 11 lz 12 ssi; 1] 65 2; 2
Pt (ot p) dan g =50 3]
AT v o M
Myly iy 33) . Iy 6855 6554
T, TaMs ( T SR Rl T e v e T o
Seving that My=0: Mz= —5 ton-metres; §;=0; L=6m; l,=4m; J,=2J;
Ts—=J and S} ;=0 we find

et Mg e g) -
Consequently

lblpon collection of terms and other simplifications these two equalions
ceome

AMy+2Ms==5 and 6M+ 28}y = —29
these two equations yield M, = 1.98 ton-metres and My = —1.46 ton-metres.

The bending moments acting along the spans may now be easily found using
expression (5.10), those acting along the cantilever span are already known.
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Span 1-2
—q . 4G—
I . T —% z--1.98+ 1"%--1~‘-*3§z=-1.98—2.24x
for z==3 m M=1.98—2.24% 3= —4.74 ton-metres
- - C G
for 3masz < bm .-’lf-::iO—»-g-x+i.98—;'———’—'—éﬁﬁ——-1;'£5z=11.98—2.24::
for z=3m M=11.98—2.24 ¥ 3=>5.26 ton-mctres
for r=6m M=11.98—2.24 x 6=—1.46 ton-melres
Span 2-3
: e 4
for 0 zactm  Memd,Sp— 52“2 _1.46+~ﬁ;-‘-‘-i§z=
= 1,40+-3.6155—1.5x2
for x==2m M= —1.4643.610 X 2— 1.5 ¢ 2= —0.23 ton-metre
for 2ms e s 4m M=4.52—3x2{r—1)—1.464}
_t 4
+5—";’_‘° e 4,542,385
for x=2m M=4.54—2.385X2= —0.23 ton-metre
for z=4m M=4.54—2.385 x 4= —5.00 ton-metres

The compleied bhending moment diagram is represented in Fig. 6.10d.
The magnitude of tho shearing forces acling within the spans will be given
by the first derivative of the exprossions obtained for the hending moment.
Span 1-2
= —2.24 tons
Span 2-5

for 0Cra 2 m Q=3.615—3z
for v=0 (@=3.615 lons
for z=2m Q0=3.615—3 X 2= —2.385 tons
The shearing foree will become zero at the cross section determined by
Q=3.615—3z=0
wherefrom

E 1121—5= 1.205 metres

At this cross scetion the hending moment will reach its maximum *
Mgy = —1.46+3.645 x 1,205 —1.5 X 1.2052=0,72 ton-metre
2melz<L4m (= —2.385 tons

The shearing force diangram constructed using the ahove data is repre-
sented in Fig. 6.10e

L 4

* By maximum we mean here any point corresponding to a horizontal tan-
geni to the bending moment curve.

20
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The reactions at the support will be obtained as previcusly using formula (7.10)
D= —2.24 tons; Dp==3.615—(—2.24) = 5.555 tons
lig=5—(—2.385)="7.385 tons
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Fig. 6.10

ig. 0104 represents the heam with all the loads and reactions acting
thereon, Lot ns check whether the equilibrium conditions are satisfied
EV=—2.2445855 +7.380 —83x2—5=<13.24—13.24=0
EMy=1.09410-5855 X6 —7.385%10+-3x2x 7+
4+ 5% 11=108.98—108.98 =0
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Let us control also the aceuracy ol the M diagram using the melbud baced
on the consistency of deflections. For this purpose let us compute the deflection
of the seetion sitnated direclly over support 3. This deflection must be necessar-
ily nil, the Sl]]]JJOl‘t. preclnding any vertical movement of the heam. The
bending moment diagram induced by a vertical unit load acting at thie corre-
sponding section of a simple statically determinate beam (obtarned Ly elimi-
nation of supports 2 and 3) is represented in Fig. 6.10g. Multiplying the ordi-
nates to the curve of the resultant moments Mghy the diagram of Fig (.40g
we obtain

as=%t—2x10x 1,98 12X TX4T4+10K4.74—Tx 1 .98) =

(=]

X—Q%--—%—‘l—:!_——2)\"1><5.26-+-2><4x1.4ﬁ+7\<1 i6—4 % 5.26)

Kogpy 12X AX L A0 F2 X 2% 0.23+4X 02842 1 46) 7 —
LB G431, X2 N

—~1X5‘%_2X35{-“2—)(27'1-—2—'—)((0-2{5)(?!—3)(?)?7,:

— 7 15,075 — 18,495 45,48 —6 + 3,04 =0

which indicates that all the computations were carried out correcily.

&

2.40. THE FOCAL POINTS METHQOD

The method described in the present article becomes particularly
interesting when continuous beams with a very large number of spans
must be dealt with or when only a few of Lhe spans carry the loads.

& : & 3 A=) 1 l " at Hed
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Fig. 7.10

Let us examine the beam of constant cross section appearing in
Fig. 7.10a¢ assuming that only the nth span is loaded. We may
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eliminate all the redundant constraints opposing mutual rotation
of adjacent cross sections at the supports, provided we replace
these constraints by the corresponding bending moments which
are as yet unkoown. In order to find these moments let us write
consecutively the equations of three moments for each of the sup-
porls,

(a) Support 1

The equation of three momenls becomes

Mol 4-2M (L 1g) | Myla =10
lut since My=10
ZM (1 - L) 4 Myly =0

hence
My _ 2t -l (
Ti — _T = 1{3

The Jatter relation shows that

(1) the bending moments M, and M, at two neighbouring supports
are of opposile signs;

(2) the ratio g% depends solely on gpan lengths I, and Z,, but
is completely uninfluenced by the magnitude of the moments and
loads acting along the spans further to the right.

In the particular case when I, = I, the factor K, becomes equal
Lo 4, ov, in other words, the bending moment A/, is in absolute value
four times as large as the bending moment M.

The bending moment diagram for span [, has the shape indicat-
ed in Fig. 7.40b. This diagram shows that in the loft half of the
span there is a point where the bending moment becomes zero.
This point is kuown as the left-hand focal point of the second span
and will be hereafter designated by F,. The location of this point
along the span depends on the value of K, which we shall call the
left-hand focal factor for the second span. The location of the focal
peint remains uninfluenced by the lengths of the spans further to
the right, nor by the loads these spans may carry. The bending
momenlts at the first and second supporls may vary in terms both
of the amount and of the distribution of the loads, but the ratio
between Lhese moments will remain constant as Jong as the spans
Iy and I remain unloaded. Consequently, the bending moment at
the focul point Fy will remain always nil when the latter condition is
fulfilled.

The distance u; between the foeal point £, and the nearest suppoct
to the left is given by

iy

“STER,
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and in the particular case when Ij=1I,=!
u2=%£
(b)Y Support 2
The equation of three moments becomes

Ml 2Mo(la-+15) -+ Msls =10

Substituting in this equation M,= -—% we find

_%Iz-!- 2M, (Ia+ ls) - Mals =0
wherefrom

B[+t (a—)]) -

It is eclear that the ratio %—: is again independent of the length

of the spans further to the right as well as of the loads applied to
these spans. The shape of the bending moment diagram along the
third span will be as shown in Fig. 7.40c. Within the left half of
this span there will again exist a focal point where the hending
moment will remain zero as long as three spans I;, I and /; remain
unloaded.

(¢c) Support 3

The equation of three moments will be in this case

Myly - 2M3 (I3 Zi)+ M, =0

Substituting in this equation —% for’M, we obtain as pre-

viously
M& o Ly ___1__ R -
=2+ (-x)]-—&

"Thus, the focal factor for span 4 will be given by exactly the
same expression as the one for span & with the only difference that
all the intervening indices are increased by one. Consequently,
the general expression for the focal factor K, relative to Lhe left-
haud focal point of span n will be

In_y 1 _ M

A”'=[2+—’-: (2 Kn—t)]_ T Mpy (£410)
The above expression permits the computation of all the [ocal
factors one after the other. Thus, for the first span of a simply
supported continuous bheam we have

Mn-":(] and K1=-—%;='—~OO
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which indicates that the left-hand focal point of the first span

coincides with the left-end support. For the second span we
obtain as already mentioned .

_ i 1 2041y

K2~2+T3(2_°_0] — =tk

It should be always remembered that the left-hund focal point
is a point situated along the azis of a continuous bram al which the
bending moment remains nil as long as the span under consideration
and all the other spans to its left remain urloaded.

Let us now investigate those spans of the same continuous beam
which are located to the right from the loaded ones. Reasoning
in exactly the same way, we shall obtain an expression giving the
value of the right-hand focal factor. The bending moment diagram
for the unloaded right-hand spans will have the shape indicated
in Fig. 7.10d. This diagram shows clearly that in the right half
of each span there exists equally a certain point where the hending
moment remains nil as long as the span under consideration and the
spans located further to the right carry no loads. These points are
the right-hand focal points and the expression giving the value of
the right-hand focal factor which we shall indicate by &, will be
derived from that for the left-hand focal factor keeping in mind
thal the numbers allotted to the supports and spaus decrease from
right to left
RS TR

When the right-hand extremity of a continuous beam is hinge-

supported the focal factor becomes infinitely great just as in the
case of a hinge-supported left end. All the other right-hand focal
fac-tm':; will be determined in succession with the aid of equation
12.10).
( The expressions (11.10) and (12.10) may be used for the deter-
mination of focal factors pertaining to continuous beams with
fixed ends if these ends arc replaced by additional spans of zero
length. Thus, for a continuous beam with a built-in left end the
value of the focal factor K, will be given by

Ki=2+7(2—;)

where Ky, = oo for the left end if the additional span is hinge-
supported. As I, =0 we obtain K; =2 which means that the
focal point will be situated one third of the span to the right from
the wall. It is worth mentioning that this is the maximum distance
which can separate the focal point from the corresponding suppert.

Kp=2+4% (2
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As for the minimum distance, it is equal to zero as we have already
seen,

Let us apply the focal points method 1o the determination of Lhe
hending moments at the supports of a continuous beam appearing
in Fig. 8.10, assuming that only one span of this beam (say, span

M,

it

i : Mg
L ",
i iR
M9 - f z- A
Y i 2 . \ ~. Maer s

TR IR Zgn8 B

o Lo r [ Ju s
Fig. 8.10

£,) is loaded. The equations of three moments for each of the twe
supports limiling the loaded span become:
for support n —1
Ml s +2Mooy by + In) + Malp = — 6Rq_ = — 64,
for support n
My sl 2Mr (b Ings) + Mg s = —6R,— 6B,

In these expressions AL and Bf. are the imaginary reactions of
the Ieft- and of the right-hand supports of the nth span respectively.
Replacing the bending moments at supports M, , and M, 4+, by
Lheir values expressed in terms of the focal factors

My_ M,
_Mn_g= —K:_: and Mna.j = _ﬁ;l:!

4

we obtain
M‘n—l [2 “n-»i "L gn) == ?‘{{":*;1’_] + Mnln = - 6:‘1{;

Mol M [ 20+ Luws) — 225 ] = — 651

Dividing both parts of these expressions by I,

M (252 (2 ] 0 -~
Mo+ M [2+% (2_K§11+1)]= _??;1_{

and keeping in mind expressions (11.10) and (12.10) we finally
obtain
64%
Mn—lKn+M =—":
657

M, M. Ky= —.-Iu—“
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Solving these equations for M, ; and M, we find
6 (A} Kp—BE)
lp (KnKp—1)
6 (BLK,— al)
TR &K, )

If the loads are located over one of the end spans, say, the left
one, and provided the left-end support is hinged, the value of the
focal factor for this span will beeome infinitely great. The bending
moment at the left-end support becomes nil and the value of the
bending moment at the other support of the span becomes indeter-
minate. This indetermination will be eliminated dividing both
the numerator and the denominator of the expression by K,. When
K, increases indefinitely we obtain

AI)

I n

_— I

M, = _*M =

e 1 (K' ___1_) il IH.K‘;l
n n o

Having thus determined the bending moments at the supports
of the loaded span, the bending moments at all the other supports
will be found easily using the expressions for the focal factors.

When several spans of a continuous beam are loaded directly
the problem will be solved using the principle of superposition.

Mn-l: e
(13.10)
1Mu=

Problem 1. Determine the bending moments M, and M, al the supports
uf Spﬂngfl-g,’ }ca;’rymg a load unity P situated a distance z from support I
(Fig. 9.10q).

Solution. Using expression (14.40) determine the left-hand focal factors
for spans I; and I,

= M . = b, 1 )-_.
By=—jpte —oo; Kym2t ! (.. ) =4
Determine in the same way the right-hand focal factors for spans l;, Iy
and Iy using formula (12,10)

M,

Ki= —gf=—co
s_og tafo 1Y
K,-2+£3(2 0:)_4

K;=2~+-§—: (2—-;;] —3.75

The bending moments at the supports of the loaded span will be found
using expression (13.10)

6 (AIK;— BY)

_ __B(BiKy— A)
Iy (KoK —1) '

W= Tp (KpKy—1)

My=
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in which
Az (i—ax) I (@l—z) (@—2)@Rl—ux)z
TR OUTTRYTT 8 6l
B;_m(.!—;r)l (z4-1) =(l*—z7)
TTTLOTTT I T T 6

{see the bending moment graph represented in Fig. 9.40b). Using these
expressions we find

(l—x)(Ql—2x)x x (12— 12)
a[ - X 3.75— ]

6l
A TGx3.75—1) =
_(I—J:}[21—.:}1‘)(3.?5—1(12—.:2)
= 1418
z{l2—az2) (l—z)(2l—z)2
- ﬁ[ i o ] 4o (12— 2%) — (—2) 2l —1) 2
o

14l = 1472
Problem 2, Required the complete analysis of a six-span continuous beam
uniformly loaded over the whole length of span 4 (Fig. 10.10q).

Solution, Begin with computing the left-hand focal factors wsing expres-
sion (11.10)
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There is no need to compute the focal factors for the following spans,
The rith—hand focal factors will be computed beginning with the rigihbend

span of the heam, All the spans of the beam Dbeing of the same length,
we have

K3=K1= —C0
K;=K2:4
Ki=K3=3.715

The bending moment diagram induced in the conjugate statically deter-
winate boam by the given loading is represented in Fig. 10.105.

7 !
N e ., e

|
|
|
|
I

! [ b
e
=K Cl%’ ity
fer=l S e B
& _..ullllllm.. :

Fig. 10,40

Using this diagram as the imaginary load diagram we shall find the follow-
ing values for the support reactions

i nr gt 2,1 g
AsBstgoat ot
¥ FTTUM (13.10) vields immediately the bending moments at the supports
3 am

6 (28, 1 413)
My — (3'4' T 11

56_ 15 v 208?
t(Exg—1)

6((;13 56 ql3]

i2

X = — e
e 24 15 24 4_‘1 g

o615 780
Hmx7—1)
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Knowing the magnitude of these moments and the values of the focal
factors all the other bending moments at the supports of the beam are
obtained with no difficulty

Mg _ 11 4 A 2

%, — 2087 15~ 780 1"
M A 11

= ——— —— e ql2: Ma={]
Mi=—g =@ T M=t
P
M ab =g 4% Ma=0

8= ~K; = T80
The data so obtained have permitted the construction of the diagram appearing
in Fig. 1¢.10c.

3.10. BENDING MOMENT ENVELOPE CURVES

The control of fibre stresses in continuous beams and the choice
of their cross-sectional dimensions will frequently require the know-
ledge of the extreme values the bending momwents may allain al
dilferent poinls under dilferent loading conditions. The dead loads

] ? z J
lizhm | fp =t by =dem
| -
q:;f;'ﬂ" . A

”-"G FHININVAIIRNEEnYAnE

SN ? BN AT R

2k o - v & . 5 £

Fig. {1110

will be usually considered uniformly distributed but the position
of the Iive loads may vary quite considerably. If at every cross
section of the beam we sel off two ordinates—one representing
the maximum value of the bending moment (3 ,,,,) and the other
its minimum value {(M,,;,) and if we conncct these ordinales by
two smooth curves we shall obtain what is usually referred to as
the bending moment envelope curves.

The construction of such curves can be best explained using
as an example the three-span coptinuous beam represented in
Fig. 11.10a. Let ¢ be the uniformly distributed dead load per unit
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length of the beam, and p the live load also uniformly dis-
tributed, which occupies either the whole length of the beam or

a=d it
# -
! T . -
..,nnj{-iH IERENE K 3
i y
i i E
Ley ! =
e G
5
-

l

|

Fig. 12,10

is spread over certain span lengths only, or is completely absent.
Suppose ¢ — 2 lons per metie and p = 3.75 tons per metre.
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The bending moments at the supporls may be delermined using
either the cgquations of three moments alternatively or can be
deduced from the position of focal points.

The diagram of the bending moments due to the dead load jis
given in Fig. 11.10b. Fig. 12.10¢, b and ¢ represenis Lhe hending

A
ma

145

\6&9‘

2,425 °©
B

7 075
8 40
\ 2425 ) &2

LY

Fig. 13.10

moment diagrams due lo the live load oceupying successively Lhe
first, the second and the third spans.

Let us proceed now with the construction of the envelope curve.
For this purpose we shall ficst take at each seclion the sum of all
posilive ordinates due to the live loads and add it to the ordinate
at this same cross seclion due to the dead load. We shall thus obtain
for each cross section the ordinate vepresenting the maximum bend-
ing moment, M., that can be produced by the given loads. There-
alter we must pick out for each of the cross sections under consider-
ation all the negative ordinates that may arise under the oficet of
the live loads, sum them up and then add them algebraically to
the ordinale induced at the same section by the dead load. The
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resulting ordinate will represent the minimum bending moment
Mom possible under the given loading conditions.

Thus, for instance, the M, 4. and M., ordinates for section 7
over the first support will bo

Muar=1.04(—3.2) = ~—2.2 ton-nmetres
1Mrnm.= —4"‘(— 3}+(—3-2—)= — 10.2 ton-metres

Repeating the same operation for a sufficient number of scctions
we shall find the M.« and M,,;, ordinates which, connected togeth-
er. will form the two envelope curves desired (Fig. 13.10). The
shearing forces cnvelope curves can be obtained in exactly the
same way.

Envelope curves for continnous heams of constanl cross section
and even span lengths are usually constructed using appropriate
tables which simplify the operation very considerably. These tables
contain data permitting the computation of the M and Q ordinates
due hoth to dead and live loads. Hereunder we present such a table
(T'able 1.10) for a Lwo-span beam simply supported at its ends.

Table 1.10
Bending momentfa M Shearing forces I
% D. L | L. L. D. L. L. L
o -+h —B v +6 -8
0.0 [t} O 0 40,375 | 0.4375 | 0.0625
L | [-0.0325 (. 13875 (. 00625 —0.275 | 0.3437 | 0.0687
.2 40,0550 0.06750 0.01250 —-0.175 | 0.2624 | 0.0874
0.3 -+ 0. 0675 0.08625 0.01875 40,075 | 0.1932 | 0.1182
0.375 +1). 0703 4.00375 0.02344 0 0.14491 | 0.140
(4 ~+0.0700 0, 09500 0.02500 —0.025 | 0.1359 | 0.4609
0.5 —0.0625 0.09375 0.03125 —0.125 | 0.0888 | 0.2148
0.6 +0.0450 0.08250 0.03750 —0.225 | 0.0544 | 0.279%4
.7 40,0175 0.06125 0.04375 —0.325 | 0.0287 | 0.3537
75 0 ). 04688 0.04688 —0.375 | 0.0193 | 0.3943
(.8 —10,0200 0.03000 0.05000 —0.425 | 0.0119 | 0.4368
.85 —0.0425 0.01523 0.05773 —0.475 | 0.0064 | 0.4814
0.9 —10.0675 (.00611 0.07361 —0.525 | 0.0027 | 0.5277
(.95 —0.0950 0.00138 0.00638 —(.575 | 0.0007 | 0.5757
1.0 —0, 1250 ] 0, 12500 -0.625 0 0.6250
Support reaction Ay= 1.250 | 1.2500 0
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The bending moments and the shearing forces are calculated using
the following relations

M =(aq-pp) 2
(14.10)
Q=(y¢+dp)l
== dead load per unit length
p = live load per unit length
e, B, v and § = coelflicients whose values are drawn from the
aforesaid tables.

Maximum bending moments are obtained using the values of
coefficient B contained in the 4B column, minimum bending mo-
meuls using those in the —f column. In exactly the same way if it
is desired to find the maximum shear, the coefficient § should be
selected in the -6 column, and if it is the minimum value of the
shear that is necded this same coefficient shall be taken from the
—& column,

The same table permils also the determination of the support
reaclions due to the application of hoth dead and live loads. The
formula to be used is the same as for Q.

Tables such as Table 1.10} contained in handbooks usually take
carc of partial loadings of different spans when such partial load-
ings may lead to greater (or smaller) values of bending moments,
shears and support reactions as compared to those due to the loading
ol complete span lengths, For this reason the envelope curves ob-
tained with the use of such tables are even more accurale than those
constructed as explained above.

Problem. A reinforced concrete doublo-span ceiling beam carries the weight
of tha ceiling itself amounting to 600 kg per motre of beam length. The ceiling
may by evenlnally loaded with a layer of insulating malerial at the rate

q =600 kg/m P=200kg/m

phitiiyd I ITTITIITIRITRITE
1

’ L4
L=10m | L=10m |

T |

Fig. 14.10

of 200 kg per metre of the heam. This insulation may be applied to any part
of the ceiling (Fig. 14.10). Required the most unfavourable values of the benging
momett .'m(% of the shear at a section situated a distance x = 0.4 from the
left-end support and of the reaction 4, at the intermediato support.

Solution. Determino the bending moment using the first of the expressions
(t4.10), This expression may be rewritten as follows

M= qufg+spf2=Mq +Mp
30—853
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Tere ceql? represents the bending moment induced by the dead load of 600 kg/m
alone. From Table 1.10 the coefficient o corresponding Lo x=0.41 cquals
0.0700 and thereforoe

M = cgl2=0,0700 600 X 102 = 4,200 kg-m

The term M, = Ppi2 represents the hending moment induced by the load
7 whose situation along the beam jg such that it will provide either for a maxi-
mum or for a mimimum value of the moment.
In tho present case for the section under consideration the value of coeilicient
f corrosponding o M .. equals -+0.09500 and to M, —0.02500. Therefvre
M, max = Ppi2=0.00500 x 200 x 102 = 1,900 kg-m

and
My min == ppit= —0.62500 X 200 x 108 = — 300 kg-m
Hence the most unfavourable value of the bending moment at a seetion
distant 0.4 1 from the left-eml supporl amouots w0
Mmae==4.200+1,900=0,100 kg-m
If wo use the value of My Lhe resulting beading moment at the given
cross section will be considerably smaller
M i = 4,200— 500~ 3,700 kg-m
and therefore, since the two values ebtained are of the same sign, the first one
alone will he retained [or further computilions.
As for the shear, the use of the second one of the expressions (14,10} together
with Table 1.10 yields
Qe = | — 0,025 X G0N 0.1338 3¢ 200) x 10 = — 1504271 = 121 kg
Opain = —0.025 % 600 —0.1608 x 200) X (0= —150—321 = —4&M kg
The greatest value of the reaction at the intermediate suppurt will be
given by
Ay = (1,250 + 1.250p) £ =(1.250 x 6004 1.250 X 200) 10 = 10,000 kg=10} tons

410, INFLUENCE LINES FOR CONTINUOUS BEAMS

Consider a4 continuous beam acted wpon by a moving unil load
P teavelling along the span Z, (Fig. 15.10¢) and assume that Lhe
distance of this load to support (i — 1) is given by x =/,
(Fig. 15.10b). In order to find the values of the beading moments
M, and M,_, at the supporis let us fiest determine the imaginary
reactions al these same supporls

L 2 _
(=) bt (ln—-g- 1]1,,) — =) Nneln
JI1"= {ﬂ =
S B e
=M= sa b=
73 _ B
— = =(1 -l 5"

1--m
G

; : 1 3
By =1 =) Wala g — b =(1—n) &3
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Using expressions (13.10) we oblain then
6 (A K, — B (1 —n)niy - ;
Awrn..i: == i) C=UEE KK, —1 [(z_n)}lu—“ = TI)I_
=—c(1—m)nl(2—n) A% —(1 -+ )] .,
]
GH.’I‘K,L—-:I.I) (t—m i
il ! o A LR oy
A"{JI IN IK”K;‘— “ Kuf{:l-"! [(1 =" 'l) "‘n\ (- n)i
=—c(t—mn[{14n) Ku—(2—n)]
(15.10)
where
A=, E'ﬂ-
o

With the aid of the latler expression let us prepare a table giving
the values of M, _; and M, for different positions of the moving
load P (at 0.1 I, increments),

Table 2 10

Fortoulas tof e determined

My a,

" i i

.1 — o [T ", —10 R — L DOMA, — 0 |T1)
£.2 — e (128K —0 112 —r (1) 102K, —1) 28
0.5 —e (0. ADTH 7, — 1. 273) — L 2THR, — 1L 35T
0.4 —e (038487, — 0. 336} —e 1, 330K, — 10, 35
"5 — e UL BTOH T, — L 3TH) —r (1, 379K, — 11, 3TH)
b (L ABEK ", —11 3840 — e (1) 884K, —11. 331)
N7 — o (L HTIKY, —1083T) — e (L BRTR, =097
e — o L LU2H 7, — 11 288) — ¢ (. 2BBA,, —1 192y
(] — (09K, — 0171 — e (L ITHE, — .0
| [} 1]

Knowing the values of the bending moments at the supports
(see Table 2.10) and the values ol the [ocal factors A, and K, we
may easily obtain the moments al all the other supporls of the
beam for any position of the moving load along any of the spans.
This being done, we may proceed wilth the construction of the
inflnence lines either for the bending moments or for Lhe shearing

30
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forces acting at any section of span I, as well as of the influence
lines for any of the support reactions.

Let us take up, for instance, the continuous beam appearing
in Fig. 16.40 and lot us construct the influence lines for the bending
moments at all the supporis as well as the influence lines for the

P
(faj X=7l, i f,q-Xﬂln”'vi

K

7
brce o
y Ma graph
(! T |-!L||r[r='. .
Al ]| | {T’n; it
W2 (-l
Fig. 15.10

bending moment and shear at section / = I of the second span and
for the reaction D,.

At first we shall caleulate all the focal distances whereafter we
shall construet the influence lines for the hending moments at the

241
g’

&

supports of the span under consideration on the assumption that
the unit load ‘P travels along this span.

Hereafter we shall denote the bending moments at the support
by M with two indices, the first giving the number of the support
and the second the number of the span along which the mobile
load is travelling. Thus, for instance, M, will mean the bending
moment at support 2 due to a load travelling along the second
apan; in the same way M,, will indicate the bending moment pro-
duced by the same load travelling along the same span but acting
over support I.

2 J

4+ 4

=t | = .t i

Fig. 16.10
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Table 3.10

Left-hand focal factors Klght-hand fucal factors

K=o K1=3.733
Kyl K}=3.75
K=< Kj=4

, bt ; s
Ky=gz=3.733 K} =00

The values of all focal factors obtained with the aid of expres-
sions {11.10) and (12.10) are given in Table 3.10.

Table 4.10 contains the values ol M, M,, and W, computed
using data given in Tables 2.10 and 3.10. For a symmetrical beam
the values of My, Mz and M,; appearing in the same table require
no calculations.

The expressions for the bending moments at the inner supports
of the end spans (in the case under consideration M and M;,)
contain both in the numerator and in the denominator focal values
which become infinitely great when the end supports are hinged.
In order to overcome this difficulty both the numerator and the
denominator should be divided by the said focal factor. Thus,

Table 4.10
Bending moments at the suppurts
Load point
M Mig Mgy

=1} U (] 0
=01, —11.026521, —0.03874l4 — {1 (16081,
=021, —0,05144/ —0.003421, — U, 0342810,
=03y, — 0073424, —10.076121, — 1 (5250
r==0.4L, — 0080001 —0.078861, — 0, 0685815
x="0.5I, — (0. 100464, — 0L 07300 — ) U813
z=0.61, —0.102861, — 0, 062813, — 00837245
z=0.7l, — U, 0956444 — 0. 04762f — ). 082501,
x=0.8l, — 0. 07114, —0.03086i, — (1, U658y
=001, — 0. 045801 — 0. 014303, —0.041781,
z=1Ip 0 0 0
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Table 4,40 {continued)

Bending mnments at the sapports
Load point
M Mag May

g=U 0 0 U
=011, — 0, 045801, — 0. 014301, — L (K178,
=128, —0LU77144, — 0, 0308615 — (1, 0685814
r=1,8, —0,095641, —0, 047621, — 00825015
r=14f, — 0. 10286, — 0. 0628615 —0.0857 21,
xa=1.51, — 0, 100464, —0.07366/5 —11.080361,
r=0.61, — L GI00, — . (1788t 4 —0.068581 5
=17, —-|:1‘t_173|21,, —0.076121,4 —0.05250
x—U.8l, —0.051441, — 0. 063421 — 00342814
a=U0.9%, —0.02652L, — 0, 038745 — 0L O BUST
&=l 0 0 i

the bending moment My, lor load poinl given by x -

becomes
1, ((l.(}illel_(}.ITI) 1 ({1_099_0.17-1
My =— H1 2y o
i KK —1 et
ot G Tl Tt
oo

R
3,733

0.14, = 0.11

= —0.026521

The magnitude of My, for any other position ol the lead poinl
wilhin the limits of the first span will be obtained in exaclly the
same way. The values of the bending moments My, and My for
a load point situated at 2 = 0.14, will be obtained using the fol-
lowing expressions (see Table 2.10)

. Ly S AT | ea ty
M= 7!{2;{;__](U.h‘l!\g—().{]HQ)_- gt X

¥ (0471 x 8.75—0.098) = —0.03874!
S fy WG K. —( L
My = e (0.099K, —0.171) == — TR TE—T X

X {0.099 x 4—0.171)= —0.01608]
The magnitude of these moments for other positions of the load

along the same span will be computed in the same way.
The graphical interpretation of My, My, Moo, Mgy, May and
My, obtained with the aid of Table 4.10 is given in Fig. 17.10.
Kach pair of contiguous curves, those for My and My, for M,
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and Mgy, for My; and Mg, conslitute the influence line for bending
moments induced at the support separaling the Lwo spans by a
unit load siluated along one of these two spans.

Thus. lor instance, the two curves [or My, and M, constitute
the influence line for the bending moment induced at the eross
section over support / by a unit load travelling along the first
two spans of the boam. In the cvent the unit load travels along

‘7{

Fig. 17.10

more distant spans the ordinates to the influence line for the same
bending moments at the supports may be oblained using the focal
point method.

Thus, the erdinates to the influence line for the bending moment
over support due to a unit load located over span 3 will be easily
obtained using the following expression

M M
Moo Moz, M
13 Kz 4

The magnitude of the bending momenti acting at the same sup-
port when the moving load has passed to span 4 will be given by

M
Moo= —=2
_ e K
bul since
M
Mg‘ == ——-‘K—':'*
we obtain finally
M M. M
Mﬁ_ 1 3 S fH3s

Koks 3.B3%4 1

The ordinates to the influence lines for M,y and My, are given
in Table 5.10; this table contains the ordinates to the influence
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lines for My, and M,, deduced from

Mu IW“
M!ﬁ p— ___;.. — —g7E
My, My,
My=—F = —g2

The influcnce linos for the bending moments M,, M, and M,
are represented in Fig. 18.10. These influence lines may be used

Table 5.10
Bendlng moments at the supports

=0 0 0 0] 0
x=0.1i, 4 0L 010445¢ —10,003053! -+ 0007072t -+ 0.0122131
=021, +0.017145¢ —0.0051431 + G871 4-0.02067 11
0.3, —+ 0.0206251 —0.006376¢ L0.019499¢ -+ 0. 0233041
x=10.4l, -0, 021430¢ —0.0068571 + 0.0240008 1. (12742
z2=0.5l, - 0. 0200008 —10.,0066971 0. 026789¢ -+ 0. 0267897
r=10.6, 4 0.1 7145¢ —0.006000! + 0.0274292 - 0. 0240001
z=0.71, 4+ (.045125¢ —. 0048151 —+ 0.0255041 -+ 0.01949%
x=0.81, +0.0085700 | —0.0024200 | -0.0005780 | 4-0.0137172
x=0.%, -+ 0.0040200 —{(.0017681 —+0.012213¢ 40, 0070722
=1, i 0 0 G

Note: The value of index n appearing In the first column mmst be taken equal to
the second index allotted to 3.

for the design of continuons beams consisting of four spans of equal
length with freely supported ends. Influence lines for bending mo-
meuts at the supports of the continuous beam with uneven spans
and any arbitrary number of supporis can be obtained in exactly
the same way.

Let us consider now the influence lines for the bending moments
and shearing forces at a cross section of the second span located
a distance x = 0.4l to the right of support ! (Fig. 19.10a}. For
this purpese we shall use expressions (5.10) and (6.10)

Q=03+
Mg— M,

M = Mo+ 22220040+ M,y = MO+ 0.4M, + 0.6,

where Q° and MY represent the ordinates to the corresponding
influence lines for an end-supported beam of the same span. These



or'sr g

frfdyence oo

AN

&Jﬁ?’f&ﬁ 4”
FEL8E5

EI95L0 7
#5827 1
128050 2
FiZa10

o

28900
wY N

O N
52800 /

Influcrce Line for My

L5020 &
5ORFEO O
ELELIC Y
292000
aoiE 2
BEBEID D
LHOG D
2Ll0ea0 »
»@c‘a ;e

Ap macvar 38 LRowipsg

e

: ym*rz 2
AT,

ol 7

olid 7
Setaidl O
Bt
CERLRE
feddzd 2
Soeip e
'1!}? .I"

Py
HEE

2800
ogeese 8
Lo s
Fielfld
PR
L

kN




474 Continnous Beams

influence lines are ol triangular shape as indicated in Fig. 19.106
and ¢. The values of the ordinates to these influence lines at 0.21
increments appear in the appropriate columns of Table 6.10.
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The same table conlains the values of% (M, — My}, 0.4M; and

0.6M, as well as the computed ordinates Lo the Q and M influence
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lines desired. A graphical representation of these two influence
lines appears in Fig. 19.10d and e,

Let us examine next the comstruction of the influence line for
the reaction of the left-end support. The magnitude of this reaction
may be determined using expression

Dy= gl II_?'
where @f, represents the left-end reaction of a simply supported
heam corresponding to the first span. The influence line for QF,

¢ ! 7 3 i

Udnflueee line [
1

=
2 s
—
s = g
ey Ty Sy

appears in Fig. 20.10a. All the calculations necessary to obtain the
erdinates to the influence line for /), are tabulated hereunder.

The completed influence line for Dy is given in Fig. 20.105. The
influence lines for all the other support reactions of a continuous
beam can be obtained using exactly the same procedure.

Inifluenee lines permit easy and rapid determination of maximwn
and minimum values of support reactions, shears and bending
moments due to the combined action of moving loads and dead
loads (it is frequently assumed that moving loads are uniformly
distributed over whole span longths). Thus, for instance, reaction
D, will attain its design value when in addition to the dead loads
of ¢ kg per metre the beam will be acted upon by mobile loads of
p kg per metre distributed along the whole length of the first and
third spans. The ordinates to the corresponding influence line over
these spans being positive, the value of reaction Dgpe. will be
given by

Dy max = q (@) + 024 05+ o) + p (0 + @)
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fn the lalter expression w,, w,, wgand ®, represcent the areas bounded
by the influence line for Dy over the corresponding spans, These
areas may be casily calenlated using the numerical values of the

Table 710
. i M1 O:’d“‘mlus !.cl!l tLIL'
Load point Qul g L l;tl;l(‘ﬁn e
( n=>0 +1.40 0 1.0
n==0.2 +0.8 —0.05144 |- 0, 74850
=04 <R0.6 — 0. 09000 —+0.51000
Span 13 n—0.6 +0.4 —0. 10286 +0.20714
n1=0.8 +0.2 —0.07714 + 0.12256
L 'j":."‘l 0 0 0
=02 0 —0.06342 — 0, 06342
n=0.4 0 —0.07886 —0,07886
Span 2{ n=0.6 0 —0.06286 — 1), 05255
n=0.8 0 —0.0308p — 0, (3086
Ln=1 0 0 Q
fn=0.2 0 +-0.01714 00714
| n=0.4 o +0.02143 +0.112143
Span 34 n=0.6 0 +0.01714 - 0.01714
| n=0.8 0 -+-0,00857 ~+0.00857
Ln=1 0 0 0
(n=0.2 0 --0.00544 —0.00514
n=0.4 0 — 0. QU686 —0.00636
Span 44 n=0.6 0 —0,00600 —0.00500
1=0.8 0 —0.00243 —0.00243
Ly=1 0 a Q

ordinates given in Fig. 20.100 and assuming that the seginents
of the curve hetween two neighbouring ordinates can be replaced
by straight lines. These areas will be reckoned positive or negative
depending on the sign of the ordinates.
The minimum value of reaction Dy will be given by the following
expression
Dy min = q (05 4 024 03+ 0,) + p (02 + @)



1" \ REDUNDANT ARGHES

1.11, DEFINITIONS. CIIOICE OF THE NEUTRAL LINE

Arches as distinguished from simply supported systems are thrust
developing straelures whose general form is that of a curve, Clas-
sified with reference to the number of hinges arches fall into the
following calegories: three-hinged acches (Fig. 1.11a), two-hinged

Fig, 1.47

arches (Fig. 1.11d), aeches of one hinge (Fig. 1.11¢) and hingeless
or fized end arches (Fig. 1.11d). All the arches with Lhe exeeption
of the three-hinged ones are statically indelerminate. In bridge
construclion, especially in railroad bridges, the more [requently
used arches are the two-hinged and the fixed end ones.

In all caleulations in solid masonry or reinforced concrete arches
it is customary Lo consider strips of wnit width separated in imagi-
nation from the rest by two parallel planes as shown in Fig. 2.11.
The whole structure becomes thus replaced by a series of parallel
arches, Lhe deflections of which remain strictly ideuntical as long
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as each one ol Lthem carries the same load. In this way the stress
analysis romains cxactly the same for all the arched steuclures of
the same type irrespective ol their depth. Arch ribs are frequently
loaded at certain points only, as in the case of trusses or plate
girders supporting floor beams.

When designing an arch great care should be taken to reach as
close coincidence as possible between the outline of Lthe axis (also
called the neutral or the centre line) of the arch and the pressure
line (or cquilibrinm polygon). As previously stated, such a coinci-
dence would provide an arch of maximum economy. However, com-
plete coincidence can be achieved only in the case of three-hinged
arches. As for the statically indeterminate arches, it is impossible
to obtain full coincidence of the arch axis with the pressure line,
for bending moments in such arches are
absolulely unavoidable. 'Therelore the
most economical design of an arch will
be the one providing for minimum fibre
stresses in the arch,

The pressuce line for statically inde-
terminate arches can be oblained only
il all the redundant reactions arve already -
determined. However, these reactions FigAdt
depend on the deformalions of arch and
for this rcason it bhecomes cxtremely difficult to find the most
ecconomiecal conliguration of an arch of this type even when dead
loads alone are involved. The problem can be solved only by
a series of successive approximations. This may be done by select-
ing first some arbitrary curve (usually a parabola) for the arch
neutral line which is then correcled on the grounds of comparison
with the pressure line obtained for that particular arch. Alternative-
ly, the centre line of the arch may, in the first approximation,
follow the pressurc line of a three-hinged arch of the same span
and rise. Upon correclion of the arch neutral line a new pressure
polygon is counstructed for the corrected arch. The operation is re-
peated as many times as necessary to obtain a satislactory coinci-
dence ol Lhe two lines.

For arches carrying moving loads the choice of the neutral line
becomes even more complicated. In actual practice this choice
is most frequently based on the simple comparison of several arches
differing both in oulline and in cross-sectional dimensions,

The configuration of masonry arches must be selected with the
view of maintaining the pressure line for all possible load combina-
tions as close as possible to the central core bowndaries. masonry
being uncapable of resisting tensile stresses of any appreciable mag-
nitude.
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2.11. ARCHES WITH VARIABLE CROSS-SECTIONAL
DIMENSIONS

The coefficients to the unknowns and the free terms of the simul-
taneous equalions used for pucposes of stress analysis of redundant
arches depend on the eross-seclional dimensions and the moments
of inertia of the structure. As a rule, neither of these two remain
constant through the whole length of the arch. Thus, for instance,
in fixed end arches the height of the section and consequently its
moment of inertia increase very frequently from crown to abutments
because the bending moments are as a rule much smaller at mid-
span than in the immediate neighbourhood of the supports. On the
other hand, the thickness of two-hinged arches decreases usually
from the crown to the abutments following the bending moment
diagram.

Direct computation of the coefficients to the unknowns and of
the free terms of the simultaneous equations requires the integra-
tion of expressions containing the values of # and J and therefore
it becomes necessary to express mathematically the variation of
these quantities along the arch. The following cquation has been
found very useful in practical design

Je

ir
[1—(1—n)r] COS Py

i

dg=

where x = abscissa of the neutral line referred to a coordinate origin
coinciding with the centroid of the crown section
J, = moment of inertia of the same section
J. = moment of inertia of a section situated a distance z

from the origin of coordinates
@, = angle the tangent forms with the neutral line of the
arch and the horizontal
I, = one half of the arch span.
As for n its value iz given by

g s
T Jg o8 @y

Jy and @, correspond to the section at the support.
Modifying the value of #» we modify at the same time the law gov-
erning the variation of cross-sectional dimensions along the arch.
Frequently » is taken equal to unity in which case the expression
for J; becomes
'r{'
= cos Pa

I
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For a recltangular arch ol constant width b, J,. may be replaced by
i 3
gl—*zfund Jo by %; where dy and d, represent the Lhickness of the
arch at the crown and al an arbitrary section a distance 2 from
the coordinate origin. When » = 1

b d

12 7 12 cos @y
wherefrom
4

T cus §a

&

The erogs-sectional areas #, and /. become in this case

Fro==bd, and F,=bd,
It follows that

i Fe
M= P
wherelrom
; F
.I'x = '-s—,'._—c'._.—._
¥V cos gy
For simplicity this expression is very frequently replaced”hy
-
Fa= €08 (e

It has been proved thal this simplification entails an error in
the bending moment and thrust values which does not exceed 1
per cent.

When the rise of an arch is less than 1/8 of its span (flat arches)
the value of cus g, for all the cross sections will remain very close
to unity, thus permitting us to adopt a constant thickness of the
arch throughout and therefore

F.=F,=const

In the design of Mat arches the length of the clementary segment

ds is also usually replaced by the length of its horizontal projec-
tion du.

3.11. CONTUGATE STATICALLY DETERMINATE STRUCTURES
USED FOR STRESS ANALYSIS OF FIXED END ARCHES

A fixed end arch (I'ig. 3.1fa) conslitutes always a closed contour
and is therefore redundant in the third degrec. It follows that the
simple statically delerminate structure can be obtained by elim-
ination of three redundant constraints which must be replaced
31—883
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by three unknown actions X,;, X, and X, Several of such stati-
cally determinate structures are shown in Fig. 3.116, ¢, d, e and {.
The statically determinate structure of Fig. 3.11b is formed by
a curved bar built in at its left end. The thrce unknowns represent
in this case the reactive forces developed by the right-hand abut-
ment. The structure of Fig. 3.11¢ consisting of two curved bars
fixed at one of their ends has been obtained by cutting the arch
in two. In this case the unknowns will represent the bending mo-
ment, the shear and the normal stress acting across the cut. If the
simple structure is constituted by a three-hinged arch, the un-
knowns will represent the bending moments at the crown and at
the abutnments.

The simultancous equations wsed for slress computation of a
fixed end arch will take the following shape

X0y + Xobpo + Xyby5+—Ayp =0
X gy + Xgboo+ X805+ Agp =0 (1.11)
X8y + X o8z + X4baz + Agp =0
provided that in these computations resort is made to one of the
simple structures appearing in Fig. 3.11b, e or d.

In Art. 8.9 it has been shown that all the sccondary coefficients
of the simultaneous equations may be reduced to zero by an approp-
viate choice of the simple structure. In this cage the simultancous
equations mentioned above become

X8y +A;p=0
Xobgo+ Agp =0 (2.11)
X3033 + Agp=0

leading immediately to the following values of the redundant
reacltions

515' dap ’ Azy .
Xi= =gy Xom =325 Xo= 50 (3.11)

The simple statically determinate structures will be oblained
in that case by the addition to the frec ends of the curved built-in
hars of one or two infinitely stiff brackets as indicated in Fig. 3.11e
and f. The unknown actions will be applied to the free ends of the
said brackets, these ends coingciding with the elastic centre of the
structure. The directions of these actions will coincide with those

of the principal axes of inertia of the elastic loads 2} . When a fixed

end arch is symmelrical about a vertical axis the elastic centre of
the structure will always lie in this vertical, one of the principal
axes of inertia being horizonlal and the other vertical. In that case
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the conjugate structures of Fig. 3.11e and 7 will be replaced by those
appearing in Fig. 4.11e and b.

Since all the secondary displacements due to the unknown forces
acting at the elastic centre are nil. it becomes very easy to deler-
mine the nature of the displacements of the brackets produced by
these unknown actions,

Let us examine first the simple structure of Fig. 5.11a subjected
to two unit horizontal forces X, = 1. Since 85, = 0, both brack-
ots will remain vertical and parallel to one another. Their de-
flection in the vertical direction will depend on the direclion ol the
unit forces X; but the amount of this deflection will be exactly the
same for both brackets since otherwise 6, would be differcnt from
zero, In the horizontal direction the mutual displacement of two
brackets will equal 8.

When the same syslem is subjected to two vertical unit forces
X. (Fig. 5.11b) the two brackets will rotaie together remaining
parallel to one another (for otherwise the displacement §ip would
be different from zero), will shift together along the horizontal and
sustain a mutual verltical displacement equal to §,..

The unit couples X; shown in Fig. 5.11¢ will entail a mutual
rotation of the two brackets, cach bracket becoming inclined to the

vertical at an angle equal to %633. The total mutnal displacement

of the two brackets will equal §,;. The free ends of these brackets
will remain at the same distance from one another, 6yy being nil.
They may shift vertically upwards or downwards depending on the
direction of the unit couples but both must shift the same amount,
for otherwise 8,; will differ from zcro.

4.11. APPROXIMATE METHODS OF DESIGN AND ANALYSIS
OF FIXED END ARCIES

The designer is frequenty called upon to deal with arches whose
neutral line and law of cross-sectional variation cannot be expressed
by analytical equations fit for practical use. In such cases the exact
analysis of the deflections of the conjugale simple structure becomes
impossible for this analysis is based on integral calculus. Resort
must be then made to approximate methods, two of which will be
described hereunder.

In the first of these methods the neutral line of the arch is replaced
by a polygon of from 8 to 20 sides (Fig. 6.11). Tn addition it is
assumod that cross-sectional areas remain constant along cach of
these sides, their dimensions bheing equal to those of the given arch
as measured over the centre of that particular side. All the loads
applied to the arch are replaced by concentrated loads acting at
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the apices of the polygon. The magnilude of these loads is laken
equal to the combined support reaction of two contignous simple
beams earrying the same loads and having the same length as the
corresponding portion of the arch. The polygon of structure oh-
tained in this way can be analyzed by one of the methods deseribed
in Art. 3.9. For the analysis, any of the structurcs shown in
Figs. 3.11 and 4.11 may be adopted to be conjugate with or withont
transfer of the redundant constraints te the elastic centre. Any
other statically determinate system could be equally used il that
were found cxpedient. All the deflectivns and rolalions can be

[t | [‘..'_] C_!_ [
]
Fig. 6.11

easily calculated using Vereshchagin’s method of graph multipli-
cation. The stresses obtained by this procedure are practically equal
to those induced in the curved arch. Hereunder in Problem 1 of
the present article we shall give an example of stress analysis by
the method just described,

The second of ihe approximate methods consists in the subdivision
of the arch into a number of segmentis gencrally comprised between
8 and 20. Having chosen thereafter an appropriate simple structure
either from tbose appearing in Figs. 3.11 and 4,11 or any other
deemed better fit for this purpose, one should proceed with the
construction of the stress diagrams due lo the actual and to the
unit loads. This being done, the calculations of the coefficients and
free terms of the simultancous equations are carried out assuming
that within the limits of each segment the expressions wunder the
integral sign vary linearly. Consequently, the corresponding integral
will be equal to the length of the segment multiplied by half the
sum of the values of the expression under the integral sign calculated
for Lhe sections limiting this particular segment. Thus, for instance,
the diap]auement 8,5 will be taken equal Lo

i=n
ds = f,!— (

1_1

oW Mz My, Ms iy

612 L= EJi 1 _|'

i=n

i‘_’fx,s;'l_fz.e)_ My, Myt (8 | Siay
* EJ; —2 EJ; ['E+ 2)
=0
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where s§; = length of the segment i limited by sections {{ —1)
. and i {Fig. 7.141)
M, ;and M,,; = bending moments induccd at section i hy the
unknowns X, and X,
I,
h

|

moment of inertia of the same section
number of segments into which the arch has
been subdivided.

The above expression can also be written as follows

i=n =
b2 = 2 ﬂ_’ft. iMz.iE;-'i (4-11)
i=U

where s; is half the sum of the segment lengths contiguous to
section i

;__-*H—sm
8 e

Thus, in order to determine one of the displacements § or A pro-
ceed as follows:

1. Compute the values of Lhe expressions under the integral
sign corresponding to each section situated at the boundaries of
the segments forming the arch,

2. Multiply each of the values obtained in this way by half the
sum of the contiguous segment lengths.

3. Calculate the sum of all the values obtained as explained above.

4 {1

Fig.7.11

All subscquent computalions {solution of simultaneous equations,
construction of stress diagrams, etc.) will be exactly the same as
for any other statically indcterminate structure.

Problem 2 presented at the end of this acticle will give an example
of stress analysis of a fixed end arch using the latter method.

Rogardless of the method of analysis selected the displacements
§ and A may be obtained using the method of elastic loads described
in Art. 11.8. Recourse to this method is strongly advised when it
is desired to obtain the influence lines for internal stresses induced
in the arch, for in this casc it becomes necessary to construct whole
deflection graphs and not only to determine the deflection of par-
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ticular points. The construction of influence lines for redundant

arches is shown in detail in Problem 3 of the present article.
When the rise of the arch is greater than ome fifth of its span,

the calculation ol the deflections and angular rotations may be

g an

Fig. 8.11

carried oul neglecting the influence of shears and normal stresses.
This does not. apply to flat arches whose rise ig smaller than% of
the span. For these unit displacements §;; along the direction of the
thrust must be carried out taking due account of the corresponding
unknown X; = 1 as well as the normal stresses resulting from tho
thrust. However, the other displacements due both to the unit
actions and to the applied loads may be again calculated neglecting
normal stresses and shears.

Problem 1. Using the first of the methods doeseribed above compute the
stresses induced in the arch of Fig. 8.11a. The newrtral line of this arch follows
a conie parabola, and the crogs-sectional moments of inertia vary in accordance
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Je
COS Yy
assuming that the left semiarch carries a uniformly disteibuted load g = 2 lons
per metre.

Solution, Subdivide the arch span inlo 8 equal parts thus adopling n = 8
and ¢ = 3 meotres. Inseribe into the given arch a polygonal one as indicated
in Fig. 8.11b. The equation of a conic parabola in the coordinate system wOg
whaose origin coincides with the centroid of the section at the left-hand suppurt

bicomes
—Hu—pE=g i U=
Ly A AT T |

The values of % at the boundaries of all the different segments are indicated
in the same fgure. Assume that the conjugate simple structure is obtained
by cutting the arch at the crown as indicated in Fig. 8.11¢ with transfer of the
redundant constraints to the elastic centro.

Compule thoe ordinate y; of this elastic centre in the coordinate syslem zy

¢ ds
z [
V3

Sinco J; is ussumed constant for each side ol the polygonal arch the
expression for y; hecomes

with the expression J, = . The 8, ¢ and N diagrams will be construeted

4x6 2%—§ .

Ha=

i=n
Z Yit-t-¥1 Si
i
_ =t
¥s== i=n
Z ol
I
i=t
where s; represents the length of side i and ‘{{# is tho ordinato to the cen-
tre ol this side, 3
In the case under consideration we have J;== 'EBEC‘T where ¢; is the incli-

i !
nation of side i of the polygon to the horizontal and thorefore
8; _ i GOS.@;: a
i = Je Je

Honce
i=n iem=n
2—‘}—0 D) Wieat-vi) ) Wit )
- i=1 = i=1
e a 2n
Tcﬂ
or with due regard to the symmetry of the arch
i=n/2
2 2 (¢1-1-Fu1) t—n
= 1
ppm =t = ) Wit 01)

i=1
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wherefrom
I O ) o e
b= (b—i—gx Z_I_T % 2 |__8_>( 24 t)) = 2.0625 meires

The exact value of yg for a parabolic arch whose moments of inertia vary

in accordunce with the J, = L ig equal to —1--jwhic.h in the present case
cOo8 Gx 3
is smaller than the value obtained sbove by 6.25 em. This difference can be fur-
ther veduced inecreasing the number of sides of the inscribed Hnlyganal arch.
Fig. 9.11 represents the hending moment diagrams induced in the sitaple
structire by unit actions applied at the elastic centre, and Fig. 10.11 those
due to Lhe actual loads concentrated at the apices of the left half of the polygonal
\‘fl‘(

arch. At both ends of this areh (points O and 4) these loads are S 3 tons,

and at the intermediate points (points 7, 2 and 3) thesoe loads amount to gz —
= § tons. The rcaclion of the unknown consiraints will be given by

61:} d&; A:iq
D OTIE ool U S . S NS 3.11
1 ‘5“ (')22 3 63,1 { )
Displacements & and A will bo obtained multiplying the graphs of Fig. 9.11
by thoss of Fig. 10.11 using Vereshchagin's method. It should be remembered
that the ratio between the length of each side of the polygon and the moment
of inertia of the corresponding cross section remains constant and oqual fo

§; s;co8q; a

-'ri_ Ji JL‘

The unit displacements will be determined using [ormulas peculiar ti
trapezoidal stress diagrams (see Art 8.8). Thus, raising to the second power
the M, graph (Tig. 9.11e) we obtain

24 83 63 21 21, . 63 21
e N2 L L W B L
bu=gzy, (2 16 16 21616 T 2 18 iﬁ)"“
2026, .0 9 .20 9 9 9
+ (2% ot w1 m) {27 w2
2797 .9 27T\, (.21 27,33 33,27 33 2,457
X35 16215 16) (‘ﬁ'ﬁs“'m'rﬁt,;ﬁ'm)]=.-—azme
The valucs of 8y and 833 will be obtained in the same way, i. e., raising
to the second power the My and M graphs (Fig. 9.146 and )
am_ﬁmcg(zxmxm.}.zxgx9+2><12><9)+
F{2XAXIF2xBX6F2x9%x8)+
)
-Hzxsx6+2x3x3+2x6x3)+2x3x3]=.‘B%2
&

a 24
63:3:-_-&'.75 ® Bmm
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The displacements Ajq, Agg and Ag, due to the actual loading will be
given by the product of the M, M, and M, graphs by the M,

(Fig. 10.11) M, graph
duq =gz [ (—2x 5 x vt —2xfgxm—Txar—F x 1) +
—I—(—zxf(l,ysi 2% 1><%._31><35+T9§,<81) +
(2"—3*3*“ 2><;2;><9 x9+f5x3(s)+
o+ (2 27X9+16x9)]‘—8§;:

a *
Bog =g 12 X 125 14442 9 X 8112, X 814 9 x 144) +

FEXIXBIF2XEXIBLI% 66X 81 (2x %30+

+2XBX94-6X9L3%B6)L2 XX = 'f;”
[

¥
814304 a)L— 2

) (‘14'1-‘1
EJT,

Agg == e

Introducing tho values of these displacements in equations (3.11) we ohtain

. Mg 7,311 %32
Xy= B Bx2,457 =12 tuns

3z 22 5.292

2\":'_———6—22-_— 1,152 = —4.504 i-Gﬂ-‘i]
d3; 594
- 3 '
Xi= T 24.75 ton-metres

The M, ¢ and & diagrams may now be nhtalned applyin m tho e <1‘~ll("
cenlre of the conjugate structure two forces X, 2 tons an = —4.504

tons and a conple X4 = 24.75 ton-metres togotlwr \\n,h the umfnrm loads dis-
tributed over the left semiarch.

The following [urmulas may be used prcmdud the ordinates pass through
apices of the polygonal arch:

(a) for the left semiarch (Fig. 11.11a)

2
M=X{(y—yo)+Xox. !‘/\s—qtz

= — Xy sin ¢+ Xo 005 ¢ — 4 COS ¢
N=X,cosq-+Xosinqg—grsing
(b) for the right semiareh (Fig. 11.11d)

M=X (g —ys)+ Xoz— Xa
= —X; sinqpt+Xpcusg
N=Xjcosq—Xpsinq
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In the above expressions z and y are the coordinates of the neutral line
of the arch, & hecoming negative 1o the left of the axis of symmetry (sce
Fig. 8,418, while ¢ i= the angle between the tangent to this neatral line and
the horizontal. The values of this angle are positive for the left half of the
arch und negative fur the vight one, *

Normal stresses will he reckoned positive when they cause a compression
of the arch. For the bending moments and shearing forces the usual sign con-
vention given in Art. 1.2 will be maintained. 1t is easily scen that all the

=Zt/m

IR R IR A A T IR M I

¥

| - |

i = 3o

l e B ' Jx; N-\.)I|I

I b ogl | ; S
/ [ & X2

| X3

|

exprassions [or the stresses induced in the left hall of the arch differ from those
Sor its right half only by the presence of terms due Lo the distributed loads ¢. The
values of the angle @ will be deduced from the equation of the noutral line

4
n="(—-8%
wherefrom

an_4f
=T

46
242

o

tan ¢ = (I—25) =

(24—28)= 1 —

8]

+

* The stress diagrams must be constructed for the real areh and not for
tho imaginary polygonal one adopted solely with tho view of simplifying the
computations.
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The values of x, ¥ and ¢ corresponding to different cross sections ol Lhe arch
appear in Table 1.11.

Table 1.11
Seglion | em | g q sin @ cos @ xm v m

¢ G 1 457 0.707 0.707 —12 6
1 3 0.75 36752 (.600 0. 800 -4 3.375
2 i} 0.5 26°34" 0,447 0.594 —6 1.5
3 9 0.25 14202’ 0.2425 | 0.970 -3 0.375
4; 4’ 12 0 Q° 0 1 0 u
3 15 —0,25 | —14°02" | —0.2425 | 0.970 3 0.375
2r 18 —0.5 —26°84" | —0.447 0.8%4 i 1.5
1 21 —0.75 | —36°562" | --0.600 0.500 9 5375
o 2 | -1 —457 —0.707 0.707 12 0

The ordinates to the M, @ and ¥ diagrams together with all the correspond-
ing computsations

are entered into

Tables 2,11,

Ordinates to the M Diagram

341 and 4.41.

Table 2.1

: e e (inages
i;; gl BN [T Xyx | Fa| rof tha Ir::f: Tapt ':;f
& somlarch |ton-melres
0 3.93715( 47.25 —12.00| 55.13 —144.00 | —106.87
1 1.3125|  15.75 —9,00 | 41.33 —81.00 0.85%
2 —0Q.5625| - B.75 —B.00 | 27.56 —35.00 %50
3 S1-1.6875) —20.25 |& | —8.00| 13.78 |42 ~49.00 0,28
440 | T | —2.0625| —24.75 - N 0 u
3 |=|—1.6875] —20.25 | | 3.00 | —15.78 | — —4.98
i —0.5623| —6.75 6.00 | —27.56 = — 4.3
1 1.8425| 15.75 900 | —41.8 - -0.8h
0’ 3.0375) 47.25 12.00 | —55.14 = 1. 87

The diagrams
conlained in 1ho

al

iven in Fig. 12.1% have been constructed using the data
ove tables.

Let us check the 3 diagram of Fig. 12.11 using the method hased on the
consistency of deflections (see Art. 5.9). This can be done multiplying the said
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" Table 3.11
Ordinates to the @ Diagram

= gqx cos ol Ordinates

%g:-n P. ¢ atn o S—":X’é Xo) cos® [ Xg cos 1 qx fé’}}; tst::e; é?agﬁﬁrf
No, miarch tons
Y] 0707 | —8.484 0.707 | —3.248 | —24.000| 16.968 5,24
! 0.600 | —7.200 0.800) —3.675 | —18.000 | 14.400 3.53
2 0,447 —3.3b4 0,89 --4.109 | —12.000] 10.728 1.26
E] § 0.2425| —2.910 | 2 |0.970] —4.457 | —6.000( 5.820 | —1.55
44 = 0 0 - 1.0 —4.5M 0 0 —4.5%
g = l_¢2a25] 2.910) | |0.970| —4.457 - o =" 55
b ). 44T7 5.364 0,804 1 —4.109 — — 1.26
7 —0.6G00 7.200 0.800 | —8.675 - — 3.03
i 0,707 8.4584 0.507] —3.244 — 5.24
Table 4,11
Ordinales lo the N Diagram
) ol | Qntinates
tian | X | ons @ ens @ Xo sin o Xg gin g ax left diarram,
No. semlarch LOTS
0 10.7{‘1?' 8.484 0.707 | —8.248 | —24.0001 16,908 22.21
| 0500 9.600 0600 | —-2.756 [ —18.000( 10.800 17.64
2 0,894 10.728 (L44T | =2.054 | —12.000] 5.384 14.04
2 '5 0,970 11040 ?% G.2420 1 =114 | 00D 1,455 11.68
44717 (1.0 12,000 |2 | O it 0 0 12.00
" A = 0970 11.840 | | | —0.2425 1.114 — — 12.76
Pl 0.8%4 | 10,728 — 0447 2.064 -_ — 12.79
7 0,800 9 600 — 0. GO0 U756 = = 12.30
T i 0.707] 8.484 (0. 707 3.248 — — 11.73

diagram by, say, the unit moment diagram 3, (Fig. 9.115).
(¥

9
—} [(ZX 1251587 —2 % 9 % 0.85 —12 X 0.85 + 9 x 16,87) —
<

— (2% 0 08542 X B¢ 9.56-|-9.50 % 94-6 X 0.85) —
—(2X 06X+ 2% 302846 %028+ 3% 9.56)—

—2x 8% 9.8 ‘F% (556.7—557.4) & 0
“¥g 7
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A : \!,

/
a
s

60 »

Fig.2.11
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Problem 2. Reguired the 37, Q and & diagrams for the parabolic arcli carrying
a horizontal load of ¢ — 2 tons per sq metre (Fig, 13.11). Compressive stresses
arising in the avet will be accounted for *. The span of the arch I — 36 n, its
rico f = 18 m. AL Lthe crown the arch is 1.2 m thick and at the ahiulineuts
1.8 m thick. At intermediate sections the thickness of the arch i1s given by

d'.\' T dc‘i" 0.5l i l 3 |

where |+ | is the horizonlal distance of the cross section under consideralion
to the crown (Fig. 15.11). The width of the arch (in the direction vormal fo the
plane of Lthe drawing) will be assumed equal to 1.0 m.

Solution. The conjugatle imple stencture with all the redundant reaclions
transferred to the elastic centre appears in Fig, 14.11. The corresponding cano-
nical equations  beecmne

¥ dut Ay =0
Agdg3— gy =0
whence
__3u )
TR |
A .
Xz=-—£ ¥ (31413
-33.1 I
s

In nrder to determine the displacements 85, 823, Gaa, Aqyn Azg und Mgy,
subdivide the srch into Lwelve segments having equal horizontal projectious
(Fig. 13,11,

The ordinates to the neutral line of the arch represented in Fig. 15,11
are, computed using expression
4f 418 z2
B9 ncd i, o L
EERETTE Y 08

All the data necessary for further caleulations are given in Table 5.11.
The angle ¢ between the tangent 1o the neutral line of the arch and the
horizonial has been computed using expression

fan gt
P=T13T

For the right semiarch tan @ and consequently the angles ¢ themselves are
{msi!ive and for the lelt semiarch they ave negative. The mean values of segment
engths contignous to section subdividing the arch have been calculated using

+
* Tn this case f = 0.51 (i. o., f?;-—;—l- I) and consequently direct stresses

should he neglected. In this problem they will be considered solely in order
to acquaint the reader with the corresponding computation techniques,

32--853
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the approximate relation s, = E-“:T with the exception of sections 6 and 6
i
for which
- [
Sg=:|'—-:-—=='.1 5m
= COS (g
and
- ] 3
g

- - —3.35
SCos e TX0.4ATT — o m

The arch thickness at different cross sections has been calculated using
the pelation specified above

1.80—1.20 lz|
=1 1] —_— == =,
d=1.20+-"m 2 | | =120+ 5

a

while the moments of inertia are given by J=% 3

The coordinates of the elastic centre with reference to the adopted axes
(see Fig. 15.11) will be 2,=0 and

ds

B
T — i
HF T AT
WSS T ey G el
I T

The values of the numerator and the denominator of the latier expression
have been taken from Table 5.11.

Let ws now compute Lhe urit displacements. Displacement &, will he ob-
tained uging the relation

Ebyy =2 (Eﬁ%jf---rzﬁ%%]
which takes duae care of the normal stresses. In the above expression
Ei=i(y—y3); W,zi(‘.oﬁtp: F=1d
and thercfore
= s 5 8
i [z. (y—be)? 5+ 2 cos? ¢ T]

Tn the latter expression the term in brackets is multiplicd by 2 for Lhe
summation is carried along half the arch only. All ecaleulations relative
tu Edy, are entered into Table 6.11. Using the data thus obtained we find

ES =2 (2702.4+ 9,02) == 5422.8

The displacement 83, will be eemputed neglecting the influence of the
normal stresses, consequently

Ebpy—23Mi—
J

Since My=1z, this expression reduces to
8
R SN D
Edp=282% —

The corresponding caleulations are entered inlo Table 7.1
32»
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D |

Table 7.11

s{‘)lf-g“ i v, I xe i,r x4 %
U 0 0 1.4 0

1 3 i) 17.3 151

2 t 3 5.8 n69

3 b &1 15.1 1223

i 12 144 14.4 2102

3 15 225 11.4 2655

fi 14 a4 6.9 2256
Total 54941

Czing the total shown at the foot of Ue lagt column we shtam
Floa 2% 8941 17,882
Displacomuent $55 will be obtained in exactly the same way

.E(Sga e R f*‘

"-cla:l

where 1*13=l leading o Edyy=2% J-
Using the value of the total of Table 311 we get
By =2 X 01,9=1855

The displacements of the simple strueture due to the apphed loads will

be ablainel using (he following expressims

EAyy = M %
gy — .JfL,if,‘.-J-
EAgy - = 5150 s
ri 30. = .f3|’fq7-
T = — it Un?
where My=y—ps My=ua; My=1: My _%= _..f‘,;i._; — % and,

quently,

GeHIS -
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In all the three of these expressions the summation will be ecarried over
e right semiarch only, the bending moments in the left semiarch remaining

ﬁ-nstamly nil. Turther calenlations arve carried out in tabular form (sce "La-
e 8.41).

Table 8.11

S = _ =)= i
ton |« v + | v w 2 e :1 w1l
0 0 ¥ 10.4 } -5.40 0 0 0 0
1 3 0.5 |17.3 | =4.90 (.25 4.3 —21 13
2 6 2 15.8 | —=3.40 4 63.2 —215 370
3 9 4.5 451 | —0.90 20 25 305.8 ~ 275 2752
4 12 b 14.6 2.60 64 934 4 2429 11213
5 5 | 12.5 | 1i.8 740 | 156.25 | 1843.8 13001 27657
fi 18 | 18 fi.9 12.60 | 324 2235 6 28180 40241
Total D3BT.1 43178 82250

Using the results of these calculations we get
EAjg= —43,AT8; EAp, = —82,255, FA, = —3387.1

Introducing these values iuto exprogsions (3 11) we ebtain the magnitudes
of the unknown redundant resctions

Aig 45,178

(= =10 706 tons
i 5. 5422.8 7.96 tons
l'} 8!) 2-,)
LN .
¥are =50 17,53 =400 tons
Agg  538T
(= —— = =20, R
‘\d b3 183.8 24.31 ton-metres

These forces are app]led al tho clastic centre of the statically determinate
conjugate structure, Together with the uniform loads applied to the arch, they
constilute the complete system of loads purmitting the computation of all the
stresses and reactions {Fig. 14.1%),

The ordinates to the 3, Q und N graphs will be obtained using the lollowing
equations;

(a) for the left semiarch

M=Xy(y—ys)+ Xox+ X3
Q=X sinp+Xpcosy
Ne=X{cos ¢ —Xosin q
(h) for the right semiarch
M=%, (y—y5) + Xpz+ Xy — 1
Q=X,;sing+Xpcos p—gysing
N=2X,c0s g— Xy sin g—qy cos ¢
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[t will be noted that the expressions for the left semiarch differ from those
fur the right one solely by the absonce of the term accounting for the uniformly
distributed load q.

All the caleulations relative to the ordinates to the M, N and § diagrams
are carried eut in Tables §.11, 10.11 and 11.14.

Table 9.11
Ordinates to tbe 3 Diagram

Sec- —qu-ﬂ =—t] Omiloates
vion | Xu| U=y [Xilv—ug | Xp| = Xox | &y (for the E‘}n}]}fi,ﬁ_
No. right ton-metres
semiarch}

= 0 —5.40| —42 96 0l o s —13.87
£ —4.90| —39,00 —3 | =13 80 B —23.49
= —2.40] —27.u8 —6 | —27.60 — - 25.35
#o3 —0.9| —7.18 —9 | —41.40 = —19.25
= 4 260 20070 —12 | —55.2v — —a.19
& = 7.0 54,52 —15 | —69.00 - 1683

6o | 12.60) 100.30 | o | 18 —82.80 | - 45,51

0 e | =540 -+42.98 | ol o o 0 —13.67
€ 1 —4.0| — 39,00 350 13807 —u.2s 3.56
z 2 —3.40 —27 08 & 97.60 —4 25.55
ER —0.0| =716 01 4l.40 —20.25 43,30
2 2,80 20,70 12 |  55.20 —64 FAREL!
o 6 7.40|  56.52 15 69,00 —136.25 — A 42
= 4 12.60| 100,30 18| $2.80 — 324 —111.50

The diagrams shown in Fig. 16.11 bave been plotted using the ordinatos
caleulated in tho ahove tables.

1o cheek the accuracy of the M diagram let us multiply this diagram by
the My, M, and M, graphs. In olher words, wo shall obtain the values
of ).‘..J:T,M-j—, SML,M -3 and }:E,M-} both for the left- and the right-hand

semiarches. Wemembering that My =y — y,, My =z and ;= 1, these
expressions simplily and become

: % s s
Ziy—up) M 7 zxM F and EM’T

The necessary calculations are entered into Table 12.11.

1t will be observed that the totals of the entries in the last three columns
of Table 12.11 differ very little from zero, which confirms the aceuracy of the
diagram. The slight discrepancies, which remain below 1 per cont, are due to the
fact that we neglested the normal stresses whon checking this diagram whereas
in computing &,y these stresses were taken inte consideration.

Problem 3. Required the influence lines for the reduntant reactions X,, X,
and Xj as well as for the stresses My, N and Q5 acting at section K of the arch
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Ordinakes Lo the € Dingram

Table 10.44

See- : i —— s c:,f,d,{“;n:f
";\!'Tl.n Xy| siny | Xpsing | Xaf cosq | Xpcuse | 7 iby_ " 4 dingram,

A seaninrely) tons
A i 0 1 AE — - 4 B
f..; 7 4 ARG =25 TRITAL 4,37 —_ —_ 1,40
= 2 ~(1.035 | —4 42 1. 832 3 84 —_ —_ —i1.50
§ 3 — 0 TOT | 5.3 0,7 3.25 —_ —_ A S L
g2 f AL —(,37 1,600 2,70 — — — 3.1l
= 3 —0.838 | —6.83 0.514] 2.6 - — —4.47
il =089 =711 | = 447 2.06 =t == D05
G Al 0 e & 4,60 0 0 4 Bit
= i .31 2.52 0949 4.37 -1 —0,52 i 57
3 2 (555 4.42 0.432| 8.83 —1 —2.22 .05
— 0.707 a.03 0.7 3.25 -4 6,35 o e
& J 1 Biny th. 57 L) 4.76 - 15 12 8 Y
= 0858|683 0.514 | 2.36 —25 2445 | —12.28
= b ). 104 7.11 0 447 2.00 — A6 —32.18 | —23.Mm

Table 11.11

Ordinates to Lhe & Diagram

Gig- N — i el (jxilfuntf-f;
tiun | Xi| rose |Xicosw|=Xy| sing |—Xysing| T I'fr?irul'ilt.w tli?w-l#;un\.

ho. | semiarch) tons
e 1 7.96 0 i — - 700
% 7 01049 7.05 —1 310 1.45 —_ — 0.0
R }.832 .63 —0.555 2.50 — -— .18
z 8 0707 | 563 —0.707 3.25 =: = 5.8
= IR 4.78 — 1 800 365 — — 8.4
0y 0514 | 4.00 —0.8n8|  3.05 = — S0
6le| 0447 | 355 | B |—ves| 4| — — T.07
T 0w 1 208 | V| 0 0 ol o 7.
g 0. 949 7:5h 0316 —1.45 -1 —45 5.1o
= 2 0.332 663 0,905 | —2.55 —4 —3.33 075
F & L7071 5.63 0,707 —34.25 ) —, 3 —3.08
o 0.600 | 4.78 0,800 -3.68 —1f =0 =860
w5 0.014 | 4.00 0,858 | —3.05 —25 | —12,85 | —12.71
= G 0. 447 3.06 0.894| —4 11 —~dh | —18.00 | —16.64
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represented in Fig. 514 of Problem 1. The abseissa of this section will be taken
equal Lo the quarter gpan of the arch, i.e., to 6 . The construction of imfluence

. e

T Z

T Tt
a oy

Fig, 1811

lines will be curvied out using the method of elastic lnads. The first of the approy-
imate mothods described in the present article will be used throughout and
in addition the influence line for the unknown X, will be determined using
the second of the approximate methods.
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Solution. The coordinates of the inscribed polygon apices as well as the
ordinate y, of the elastic centre of the arch were calculatod in Problem 4. These
coordinates are given in Figs. 8.11 and 9.11 which represent equally the simple
structure used in this problem and the bending moment diagrams induced

Table 12.11

:2 e [ W]
5l . e 7

%. T T LR o} é In*‘:\ Sl

& = # | mrs 2 ® = = = =
= 0| —5.40| 0(10.4]—56.16] © | —13.67 768 1| —142
E 7| —4.90|—38 [17.3|—-84.77| —51.9{ —23.49 1994 1249 | —408
E 2| —3.40|—6]15.8|-53.72] —94.8| —25.35 1362 | 2403 | —40t
78| ~0.99—9 |15.1|-13.59| 135 0| —19.27 262 2616 | —2u1
T 4| 2.80(--12)14.6] 37.96|-175.2| —5.19 | —107 a9 | —76
= 5| T40|-15[11.8] 83.75|—177.0] 16.43 1416 | —29079 199
6| 12.60|—18 6.0 86.94|—-124.2| 4u.81 4070 | —3814 323
_n) —5.40| 0)10.4|-5616| o | —13.07 768 0f —142
T 4| —4w0| 317.3|—84.77| 51.9| 3.86| —327 20 37
E 2| -3.40| 6/15.8)-53.72| 94.8| 25.85 | —135) 2451 408
24| —0.90| 9/15.1|-13.50| 135.9] 43.30| 588 | 5884 654
w 4| 2.60| 12/14.6] 37.96| 175.2] 41.21 13641 7200 €02
&= 5| 7.0f 15/11.8| 83.78| 177.0| —1.42| —119| —251| —17
&6 12,60 18] 8.9 86.94| 124.2|—141.59 | —u802 | 13950 | —770
Total L12105 | 482003 | +2253
—12422 | —23003 [ —2245
—227 | —100 | |8

by unit actions X,, X, and X; applied along the redandant constraints. The
simplified expression for the clastic loads was given in Art. 12.8

. Sp S ;

1-;'”:@}; (Mp_s1+2Mp) + ﬁi—l(&-‘ﬂn+Ma“}—an tan B +2neq tan Puig
Neglecting the longitudinal strains of the arch and remembering that

13

3; 5 .
the J_l vatios remain constant and equal to 7
[

, this expression is [urther

simpliiied and becomes
- a ' ' e

Wn=‘@Tc(Mn-1—r4Mn—rMn+1) (9.11)

At the crown and at the abutments §,=0 and S,.;+=0, and therefore
the elastic loads will equal

a y c -
Wo=m:'l2Ma +My) (6.11)

’ a 7 .
iﬂ—'m-c(M3+2M,;) (7.11)
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Let us eompute the ordinate y, of the elastic centre using the equation
8;3 = 0. For this purpose let us determine tlie elastic loads corresponding to the
bending moment diagram induced in the conjugate simple structure by a unit
conple X;=1 (Fig. 9.11¢c). ]

Using expressions (5.11) through (7.41) we find

a ouse B
W{:,:-—-:-T‘.(Axiwi-i} —“—‘2}:?1_{'

Wi=W,=W;s= G;Jc(1+4xi+i)=z?fr_c

: a L =_ﬂ:
11:4_——GEJ,:(1+2><1) SET

The new imaginary strueture will consist of two semiarches held fast at the
elastic centro as indicated in Fig. 17.11. The imaginary bending mement at the
fixed ends of these semiarches loaded by a system of elastic leads parvallel Lo the

Feg. I17.11

required displacement 8,5 and acling at points 0, 7, 2, elc., must bo ml, thus
permitting the delermination of y,

- - 27 : 3 ! A ;

o ws—0)+ Wy (v )+ (=3 ) + W3 (ve—g ) +Wae=0
or

o [Ge=0+2 (=5 ) 42 (ve—g) 42 (se—3) 00 ] =0

wherelrom

33
3‘!;3-—?;::0

and
33
¥s=1g= 2.0625 metres

The value of y, obtained in this way coincides exactly with the one mentioned
in Problem 1 though the two were ealculated by entirely different methods.

The simultaneous equations permitting the determination of the redundant
reactions due to a moving load unity P hecome

X 4813+ 64p=0; Xobon 482, =0
Xadag 483, =0
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wlierefrom

- blp 6'3'."

s b=

if iga
LN
4{_-; ? —""!'{'
‘5:}3

our
'Sllli b?lﬂ 6;:3
ety & D\ Lo g T — Sy
' W] . 822 B 033 ¢

The graphis of 854, 8o and dp; Tor various pozitions of the load wnity P coun-
stitute the delleetion graphs of the simiple structure due to the application
ol the redindaut reactions Xy = 1, Xp — | and X = 1, vespectively. Divided
iy —85y. —Bae and —63y the ordinales to these graphs will represent the orldi-
nates €0 the influsnce lines for Xy, Xa and Xa.

Previonsly we have agreed to call this method of construction of the deflec-
Licm graphs mduced by unit loads by the wrin kiremalic method. The e
deflnetion graphs could be also obtained by the elustic loads method. TF 1hint,
wore dosired, one should start by constructing the ,, M, and My graphs dne
to unil leads ¥y, X and X caleulating therealler the corves cnding clislie
loads with the avl ol expressions (3.11) through (7.11} (zee Eig. 11y The
values of hese elastic loads multiplied by EJ, are given in Table 1341, Tl

Table 13,71
Yalues of Elastic Loads (multiplied by ./ )

Vit [orees
Load (uind, = T
A A Xy
0 [ “._w —33 3
13 2 2
14 .o B 6
! s P
15 2 s
" -%l_ - 56 6
14 2 2
£ -73 —18 6
g Sl o
It 2 b
[ — 44,5 -3 3
' 16 ‘ B 3

the elastie load 1y fat point 2) when the simple structure is loaded by Ay = |
fave Tz 91la) is given by
[ 3 21 " & 21

Wy - — (M AMo - My =m—— { —— —— | T a—

2~ g7, M1 | 4M - My =gpr (-10 X176 -ua) 6ET,
amd loasd Wy (al point ) due to the application of forces Xy=1 to U
stmplie structure (see Fig 9,110 and By, 7110 will amouut tu

a

. P _ 3 ; S
W, =T, tMy “2M,) = ml(_.d.f_z %y = -

o
2E7,



401, Approvimate Methods of Design and Analysis of Arches 00U

In order Lo htain the deflection diagram &y we must apply Lo the lelt-hand
part of the imaginary structure the clastic Joads corresponding to the wunil
action X;. These elastic loads must be parallel to the displacement in question

2ET;

Fig. 18,11

and must be directed towards the more extended fibres of the simple strue-
e (Fig, 18.11a).

Since the rigid bracket fixed to the simple structore jmay not be rotaled
by the unit load X,, the algebraic sum of all the elastic loads applied to the
wyslem of Fig. 18.1la musl equal zero

73.5 59 21 75 a6.5

W —1em7, Y8BT, WET.  16R7. GBS,

0

Phis relation will be ulilized for a check on tho nceuracy of the compuled
elastic loads.

The vertical displacements 05, of the simple structure due to the unit action
X, will equal the ordinates to the diagram of bending moments induced in the
imaginary structure by the elastic loads. Let us determine the values of these
ordinates at different cross sections, the position of these cross seeliong being
indicated by the upper index in parentheses

W T3.5x3  220.5
801="16EJ, = TBEJ,
78,5 6+60x3 648

6(21= -
#l 16ET, TARET,
s 135X 91+00x6-2x3 1012.5
Bk 1657, TAGET,

s TA5XI2H 69X 92X 6—T5%3 1152
bt 16E7, =T8EJ,
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The &, diagram np({ieuring in Fig. 19.115 has been obtained sciting off
tho ordinates calculated as just described on the side of tho more extended
fibres of the simple structure (Fig. 18.11a) *.

- r
(»lf:

-t

3

—— e e

deflect on gragh 5,9; faultiplian oy 'SEL )

it | , ‘ !
|I.1H||‘ l|| |
L1 = W L3
™ g oy o ]
. . L o .
E: ':1.3 g-\‘ = 5\“' ":'i i

Befintoiy: graae 8 i'.’ﬁ..e‘.rmf.'fﬁ'.' by LAY

(c) = || i
o o - b
s 3 & T,
S . ; (RSN SR
R
o~y r\ 2
b
L2
¥

veficction graphr Sy (muttiolied by 26J.)

Fig. 19.71

This diagram shows that forces X, = 1 move the neutral line of the arch
upwards, This movement will be reckoned negative, the positive direction

+
* The ordinates appearing in Fig. 19.11% are multiplied by 1675/ ..
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coinciding as convened with the direction of the unit load P, that means dowu-
wards. Consequently, the whole area of the diagram will also be reckoned nega-
tive.

The displacomont 6, will be obtained rotating the imaginary loads through
an angle of 90° until they become horizontal as indicated in Fig. 18.115. This
heing done, calculate the moment of these loads about the elastic centre and
double its value, for the displacement 8,4 reprosents the total change in the
distance between the lower ends of the brackets along the direction of the hori-
zontal unit loads X,

a5,
2 (165 12 75 (6.5 3\ . 46.5
161&'.].:( _) 10E7, (T_?)+1GEJC
3

8 8
w8 8 (735X 31.5469x 10551 x 4.5 -
g ] BX1GET, o ' ' i

1228.5
[ ! | g
F75x 13.5446.6 ¢ 16.5) = TET,

The value of §,; obhtained ahove coincides exactly with the one computed
in Problem 1 vsing an entirely different procedure. Dividing all the ordinates
Lo the 8y ﬁraph by (—0y4;) we obtain the ordinates to the influence line for
X,. This intluence line will show the variation of X, when the unit load P trav-
els along the arch (Fig. 20.118). y

Following the same procedure, we shall find the displacement &,». The
clastic loads will be applied once more to the imaginary structure and the cor-
responding bending moment will be determined. In this case the extended
fibres of the simple structure acted upon by the foree X, will be situated at the
oxtrados (see Fig. 9.11b) and therelore the elastic loads must be directed upwards
(Fig. 18.11¢). The values of the bending moments induced by these loads in the
imaginary strocture will furpish the values of the ordinates to the deflectinn
graph for the simple structure under consideration

(1) 33x3 99
P2 RET. 2Kk,

6(2)_ 33 »6-~54x3 360

4

P2 = 3EJ, eI,
50 38X 9454 x64-36x3 729
P2 2B, 3L,
800 33X 124 54X 9436 X 648 X3 1,152
P2 2ET; =32ET.

Setting off these ordinates on the side of the extended fibres of the simple
structure we ohtain the diagram represented in Fig. 19.11¢. It will be observed
that the diagram thus obtained is antisymmetrical. *

The dlsglacement 835 representing the mutual translation of the free ends
of tho hrackets along the direction Xy, this displacement must be the donlle

of 8%
1527 1,152
=25 —p L1527 1,
Oz == 20y =2 2B, EJ,
+

* All the ordinates indicated in Fig. 19.11¢ have been multiplied hy 2£/ .
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This value eoincides again with thet obtained in Troblem 1. muolliplying
the hending moment disgrams. The ordinates to the influence line for X, may
now he obtained dividing those to the 8,5 graph by (—8,.1. The eovresponding
influpnee line appears in Fig. 20011e.

T s

Infigener Line for X,

= = i .
g 8 ¥ 8 & 8 8
L) ¥e o = &g &2 T
s kS = 2 »
&= = . 3 — = ~3

In order to find the displacement graph 8, the elastic loads must be applied
onee again to the imaginary structure (Fig. 18.11d), these loads being directed
asusual towards the extended fibres, that means downwards. The desimﬂ displace-
ments will be furnished by the values of the bending moments acting at the
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corresponding seclions of the imaginary structure

6‘”="3'—>'S"3"_“—E— 6(2)_3Xﬁ+ﬁ x 3__ 36
M RRT T O2ET PETTTTORT. 2B,
6‘3)_3X9+6X6+5><3__ 3
3 26T, T2ET,
p0 3X12-6x94-6X6+6x3 144
P 2ET, 287,

These ordinates must be set off above the abseissa axis for the extended
fibres of the simple structure are at the extrades. The displacement graph for
0,5 thus obtained is represented v Fig, 19.11d. *

The displacement &35 representing the mutual angnlar rotation of the brackets
tin ather words. that of fuces 4 and 7 of the semiarches), its value will be equal
to the mum of the elastic loads, i.e,

5 ’_2(3><2 6><3)m 24
WENREL, | ahide EJ,

The same value has been obtained previously by the method of graph mul-
tiplication. The ordinates to the influence line for X5 (Fig. 20.11d) were ab-
tained dividing the ordinates o the dp3 graph by (—835).

Onee the influence lines for all the redundant reactions X, X, and X; have
heen found, we may proceed with the construction of the ianflucnce lines for
bending moments, shearing Jorces and normal stresses at any cross section
of the arch.

Let us construct these three influence lines for section K situated 6 meoetres
Lo the right from the feft-hand abutment (section 2 of Fig. 8.11h).

The angle ¢a hetween the tangent to the neutral line of the arch and the
horizental equals for this section 26°34°, sin g9 = 0.447 and cos , = (1.594
{(see Table 1.11 of Problem 1., The lever arm of the Torce X, with reference
io section A eguals

! . D metre
B G T
und the lever arm of force X'o with reference to the same section equals G metres.
The ordinates to the fufluence lines for My, @5 and ¥y, will be caleulated nsing
the following expressions: **
(a) when the wunit load P i3 between the Jeft-hand abutment and section
K or when it has shifted to the right-hand semiarch

My= —JYi'?B‘—Xzﬁ‘i‘Xa
Op=—2X8in Qo+ Xocosge= —X,0.447 - X,0.899
Nj= X eos g+ Ko sin o= 440,894 4 Xo0.447
th) whon Lhe unit load P is hetween section K and the crown

.Mkm '_Xi -%MX26+X3—1F

where r is the lever arm of the unit load P about section X and
Op= = X40.447+ X0.894 41 0,894
Np=—X,0.894+ X,0.447 +1 X 0.447
¥
* The ordinates Lo this graph have been once again multiplied by 2EJ,,
** Normal stresses will be reckoned positive when they canse compressive
stresses in the arch, the usual sign convention being maintained for bending
moments and shears, _ . . R,

33—853
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Talble 14,11

Ordinates to the M, Influence Line
Ordinaters
. " 9 N B L the My
Load poiot| Xy ~Xy — Xg —X28 X3 -r intlueuse
16 ine,
metres
0 0 0 0 ] 0 — o
1 G,1795 | —0.104 | —0.,0430 0.258 | 0.187 — 0,344
2 0.9275| —0.297 | —0.1562 0.937 1 0.750 0 1.390
8 0.8242| —0.464 | —0.3164 1.808 | 1.687 —3 0.124
4 0.9377 —0.528 | —0.5000 3000 | 3.000 —h | —0.324
r's G377 | —0.528 0.5000 | —3.000 | 3.000 —_ —0. 528
3 0.8242| —0.464 0.3164 | —1.80% | 1,687 —_ —{). 675
2! 0.5275| —0.207 0.1562 | —0.937 | 0.750 _ —1) 484
¥ UUET95 | —0.1(1 0.0430 | —0.25% | 0.187 —_ —11.172
o0 ¥} i) 0 0 0 — i
Table 15,11
Ordinates to the ¢, Inliuence Linc
Ordiniles
Lnad point X1 — Xy 0.447 Xz X 0504 0.894% Lo the
influrnce
Line
Q 0 ) Il ] e 0
1 G 4705 | —0.080 | —0.0430 | —0,030 — —0, 119
Immudiately 0.9270 | —0,236 | —0. 1502 | —0. 140 — —1, 376
te the lelt
of scetion 2
Immudiately 0.5275 | —0.236 | —0, 1562 | —.140 | 0.89¢ iLo18
to Lhe rvight
of seetion £
3 N.8242 —0, 368 | —0.3164 | —0, 283 0.504 11,243
4 04377 | —0.419 | —0.5000 | —0.447 | 0.804 0,028
£ 0.377 —0. 419 0. DO 447 —_— 0,028
5 0.8242 | —0.36% {1. 3164 1,283 —_ —i1, 080
i 0,9275 —1.236 0. 1562 .14 — —i1 (¥
i 0.1785 | —0.080 0.0430 0,139 — —0. v
o’ 0 0 0 0 — 0
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Table 16,11

Ordinates to the N, Inifluence Line

Ordinates
Load point X1 X10.894 Xq Xa0.447 | 0.447 [tOthE N,
Influence
line
0 0 1] 0 0 — 0
1 0.1795 0.160 —0, 0430 —0.01% —_ 0.141
Immediately 0.5275 0.474 —0. 1562 —0.,070 —_ 0. 404

to  the left
of section 2
Immediately 0.5275 0.471 —0,1562 | —0.070 [ 0.447 | 0.848
to the right
of section £

3 0.8242 0.737 —0.3164 —0. 141 | 0,447 | 1,043
4 0.8877 0.838 —{. 5000 —0.223 | 0.447 | 1.06%
4’ 00,9377 0.838 0. 5000 0.223 — 1.064
3 01,8242 0.737 0.3184 0141 — 0,878
21 0.5275 0.471 0.1562 0.070 — 0,541
it 1.1795 0.160 0.0430 0.9 e 0,179
7 1] 0 0 0 — 0

Tt will be observed that the expressiuns obtained for case (b) differ from
those for case (a) only by the presence of a term accounting for the uniformly
distributed load, The ordinates to the influence lines for My, O and &, will
be obtained introducing in Lhe above equations the values of X, X, and X,
scaled off the correspending influence lines given in Fig. 20.41.

1t is advised to earry out all the caleulations in tabular form as indicated
in Tables 14,11, 15.11 and 16.11. The entries in the last column of each of these
throe I.nh}os have heen used for the construction of influence lines appearing
m Fig. 21.41.

Using these influence lines let us find the magnitudes of My, ()y and Ny
induced by wniformly distributed loads acting over the whole of the left semiareh,
the intensily of this loading being equal to 2 fons per metre (see Fig. 8.114). For
this purpose we shall replace the uniformly distribuled loads by concentrated
ones acting at points @, 7, 2, 3 aud 4 of the polygonal areh. These concentrated
load=s will amount to
a 2
Po=Py=g5=—7
Pi=Po=Pg=qu=2 X 3=\ tons

~ =3 tons

33*
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The desired values of My, @ and &, will be obtained multiplying the mag-
nitudes of these concentrated loads by the corresponding ordinales to the

IF'=.?
{;4

g
? xz X 7

Influence line for M,
I

2172

344

! 390

0124
N 0 44

a5
B
S
3
&
o
35:[_-

2118
.y
40085 =

2041

H o 08
- _.,Y '

nflucrce Line for n,

8 541 =
& 178

influence lines, which are then summed up
as indicated holow

My ==3x 046X 0.344+6 1.390 -6 X
¥ 0. 127 —3x 0.528=9.564 ton-metres
Qn =3 X 0—0x0.119+6 %
w =0 3764+ 0518 | ¢ 150.24813%0.028 =

2
=1.254 tons
Np=3%04-6X0.1144-6 %

; w.,_f X 1,043 —3X 1,001 =

= 14.034 tons

These values are practically the same
as those given in Tahles 2.11, 3.11 and 4.11
and in Fig. 12.11 of Problem 1.

The influenco lines for the redundant
constrainuts X, und X; permit equally
the construction (j stress diagrams induced
in tha arch by vertical loads. For that
Eur]}oﬂe the actual Ioading will be replaced

v agystem of equivalent concentrated loads
acling at the apices of the polygonal arch.
The magnitudes of X;, Xy and Xy corres-
ponding to each of the concentrated loads
wiil be easily found using the said influence
hm-- The (lmgrams of the stresses induced
in the different sections of the arch witl
then he obtained in the usual way applying
to the conjugiate =imple steucture both
actnal loads and redundant reactions.

T I s R Let us consider an example of tho con-
e i struction of the influence line for X, using
= the second of the approximate mothods
Fig, 21.11 described in the fiest part of the preosent
article. *
Neglecling compression strains, the expression for the elastic loads will
hecomoe in this case =
W=
where §n=i*-+—2'-gﬁ-1- is the mean of the segment lengths contiguous to
section n. The values of &, may be approximately taken egual fo
= a = = a = a
Y= ——— 8 = t Spom P S
S0=Z Cosq0 1= 08 4y 2= cos gy 8= "cos 3
= a
S‘=2cc)s 'R

+

* The same method was used in Problem 2.
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: .
aml ginee "’i:Tsc@:' consequently
§u_§4_f1_3_ 3:1_?2_.?3_-4_3
Jo o Jy 2 2 Uy T T T e

The elastic loads corresponding to the application of unit forces X3 to
the simplo structure will be given by (see Fig. 9.11h)

W, =.1-raﬁ;5—}'o s lz.z—gc—= —ELJS;
Il'1=:‘!1%r="—9- _E_‘O‘J—ﬁ_%-
w2=_a-12% =—8- Ei,rcz _E;BT,
I-l’azjl-f'a_gj?z —3 _Fj_c= _'E‘E}:
Wi-:;'lf,,-i%:=0.?f%.c_=0

The deflections bz will be obtained applying Lhese loads to the imagi-
mary structure of Fig. 22.11 and computing the bending moments induced

1 3

£r

|
{nes]
A

5 L

Fig. 22.11

by Lthese loads
y_18x3_ 54

'hpz_‘ﬁ‘—ﬁ’

g 18x6-27x3 189

k2 EJ, LJ,

g 18X 9427 X 6+18x3 378
B2 EJ. EJ,

gy 181227 X 0418 x6--0x 3 _ 594
»2 ™ EJe EJ,.

Setting off the bending moment values thus obtained on the side of the
extended fibres ol the imaginary structure, we shall obtain the deflection graph
for 4., appearing in Fig. 23.11.
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g 0 :
The displacement 8y is the double of dp2. Thus, Syy equals 2{’1—4 or 1’11—%-
2 5. FFE

The influence line for X, will be obtained dividing all the ordinates to the
8y» graph by (—859) because X, = — S-f—z This influenco line appears in
Fig. 24.11. .

Tt is practically the same as the one obtained by the first of the methods
deseribed in the present article and represented in Fig. 20.14e.

Influeace Line for Xy

C
&
2

Fig. 24.11

5.41. EFFECT OF SHRINKAGE AND TEMPERATURE CHANGES
ON FIXED END REINFORCED CONCRETE ARCHES

Temperature changes. Every temperature change Jeads to the
appearance of stresses in fixed end arches, Let us establish the cx-
pressions permitting to 'predict these stresses. Ior this purpose let
us asswme that the temperature at the extrados has been increased

x
] X
5
g
1 1t
Ak "
X3t X3¢ 3
z 7
I 2 ‘,V 7 3
Fig. 25.11 Fig. 26.11

by £; while that at the intrados by t; (Fig. 25.11). We shall also
admit that within the thickness of the arch the temperature varies
linearly and ‘therelore the incrcase in temperature at the neutral
line (provided the latter coincides with the centre line of the cross

: : 1+t
section) will equal 45—2.

For the simplicity let us denote the difference (£, — £y} by At
and half the sum of these temperatures by f. The simultaneous
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equalions cxpressing that the displacements along the redundant
constrainte transferred to the elastie centre of the arch are nil
(I"ig. 26.11) become in this case
Xyibyy -~ Ay =0
Xotdpo+ Mgt =0 (9.11)
X303+ Agr =0
Since all the displacements of the arch caused by the said tempera-
ture change are symmetrical, the displacement A,» must also
equal zero and consequently X, is equally nil. Using the expressions

developed in Art. 7.8 we may determine the defloctions due to a
temperature change which are given by

A”:_o(.[t!—_tﬂ)Sﬁi_dgu+c¢“§czsh_fld3
8

3

s g
A.,,=cz(t,-—i2)SM3Ts

&
ar
Ap= —adt 5 (y—ys)%—atgcosq::x ds
] 8

ds
-_\Hg =N —CﬁAtSTQ
#

In these expressions i represents the thickness of the acch, and «
is the coefficient of thermal expansion. The value of §;; (with due
regard to the influence of normal siresses) is given by

By = S (y—us)*

ds ¢ ds
7T S el 7

3 3

while the value of 8 is provided by the expression
ds
b= %7

Introducing the values of Ay, Ay, 8y and 855 in equations (9.11)
we obtain

alt S {y—w3) «%"--1—05: S CO0S (py ds

15it & S
X” e i
&y S o ds . ds
(¥ —ys)* 7=+ S ©08% Py ==
8 a
it S%i
Xat=— Sot == 2

BTTE
EJ
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The fixed end moment due to a temperature change can be com-
puted wsing the expression

Ma=Xg -+ Xt (f —us)
Let us examine a parabolic arch whose neutral line follows
: 4 :
a curve given by y=~:—g—a:’ and whose cross-sectional moments of

inertia and thickness vary in accordance with *
i & ¢ . T hp
— ” ¥ T .
COS Py COS @y

In these expressions J, and A, represent respectively the moment
of inertia and the thickness of the arch at the crown section. Forves
Xy: and X3 will be given in that case by the following expressions**

Xy = atl _ 4batBl,
L 4 1 T4 2
('1+!-'-)E'fufj-—1 (4w

Xog = o @M ET, (10.11)

Scusﬁtpxi;—
—
ds

R ¢ pttaccll
Sw )5

&

where p=

The first of the expressions (10.11) indicates that the thrust due
to a temperature change increases together with the rigidity of the
arch and with the reduction of its rise. Qn the contrary, a reduction
in the cross-sectional dimensions and the use of the materials with
a lower modulus of elasticity will reduce the stresses caused by
temperature changes.

Shrinkage. Stresses set up in a reinforced concrete arch by the
shrinkage of concrete can be caleulated in the same way as those
due to a temperature change. Indecd if ¢ were the coefficient of
thermal expansion of concrele, af wounld represent the strain per
unit length caused by a change in temperature cqual to £°C.

+

*For a rectangular arch of constant depth these two cxpressions are contra-

[

dictory, the first leading to h= 5—o—
b COS @y

. Nevertheless the error introduced by

the assumption that % equals is negligible, especially in the casc of Mut

arches,

—t
CO3

**[1 will he remembered that Jor this type of arches y, :—é— 5
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The shrinkage of concrete leads to a shortening of all linear di-
mensions by approximately (0.025 per cent. If we admit that the
coefficient of thermal expansion of concrete is equal to 0.00001,
the shrinkage may be regarded as equivalent to a drop in temperature
of about 25°C. In actual design practice this is usually reduced to
10 or 15°C, for in reality the arches are cast section by section and
therefore only a certain fraction of the total shrinkage must he
taken into consideration. Thus, the stresses set up by shrinkage
in a fixed end arch may be computed in exactly the same way as
the stresses due to a drop in temperature from 10 to 15°C,

It is worth mentioning that there exist means and ways of com-
pensating at least partially the shrinkage effect through artificial
variation of internal stresses,

6.41. DIRECT COMPUTATION OF PARABOLIC FIXED END
ARCHES

Wlhen the neutral line of an arch follows a conic parabola and
its cross-sectional moments of inertin vary in accordance with

P

u'rs

Fig. 27.11

J g ; i
Jx-__._—wsftp . where J, is the moment ol inertin at the erown, all
g xH

the cocfticients to the unknowns and all the free terms of the si-
multaneous equations can be determined by direct computation.
Hence, for this particular case it becomes possible 1o obtain mathe-
malical relations between the redundant reactions acting at the
elastic centre of the arch and the applied loads.

et us tind these relations assuming that a vertical load unity #
acts a distance a [rom the left-hand abutment (Fig. 27.11a).
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The ecanonical cquations relating to the conjugate simple struc-
ture of Fig. 27.115 become

Xt‘su 4 5113 =0

Xobay+ 8gp =0
¥ Bey + B3 = 0
wherefrom
_ Bip
S I
b
Xp=—52 ¢ (11.11)
=
A= 8 )

The displacements §,p, 8,, and 8yp will be caleulated necglecting
the effect of normal stresses, that means, using the expression

where ﬂr?; = bending moment induced in the simple struclure by
the load unity 2

M, = bending moment duc to the unit reaction X.. Sub-

stituting the values of M,, M,, ds and EJ, in the

expression for 8¢, and remembering that for this particular type

of arches the elastic centre ordinate y, equals 2?}‘ we oblain

a

;Js'x S S (éf—-—y) 1x1(a—a) dzcosq,
2

dip= S MM, cos P Bl
0

a
2 & d
S(x-a)[?f——-hi(l—x}.r b’.i:
1]
. A O,
= BEJ, (25 1 sﬂ]
since y={;—£(l+x}a‘:.

Denoting by m the ratio il we obtain finally

12
S MO — 20 +1)

61P=_
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The value of &, is given by
I

1
oum § = (3 1-1)" () =

Introducing 611, and &;; in expression (11.11) for X, we obtain
immediately

D) 15 1
Xi= — =+ X M~ 2n+1) (12.11)

This expression can be conveniently wused for the conslruction
of the influence line for X,. The ordinates to this line for the left
semiarch will be obtained varying m from O to 0.5. For the right
semiarch they will be symmetrical to those already found.

Next let us determine the value of displacement &y,

g ) i
i

_ B afm_ 1
iy g (% 7)
where 1) represenis as previously the Tﬂ ratio.
The value of 8,9 is obtained from

: 3
5 22——5 ds __23 I ]‘2 dz i3
227 S R § (“2"_“‘" ET. — 12EJ,
o
bence
62]1 2 1 "
Xy = —g = —12 (“—T) (13.11)

Using the latter expression we may construct the influence line
for Xz varying again 1 from O to 0.5. The ordinates to the same line
for 0.5 < 4 < 1 will be equal in value but opposite in sign for the
nght-hand part of the influence line for X', i3 antisymmetrical with
reference to its left-hand part.

Now determine 8;p

i ‘3
: s il dz a?
8p=§ MM, 47—= —§ 1 (e—2) 7= —3g7~
0

As for 855 it equals

{
w3 s
— E
6‘38_8 Ms ET,
]

I
S~
-

oy
I
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which leads to
This equation permits the construction of the X, infivence line

for the left-hand semiarch. This influence line will be symmetrical
with reference to the vertical passing through the crown.
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Fig. 28.11

The cquations giving the values of the redundant reactions X,
Ay and X; being known, it becomes possible to find by direct com-
putation the stresses acting at any cross section of the arch or to
construct the influence lines for these same stresses provided the
applied loads remain vertical.

Fig, 25.11 represents the influence lines for the thrust &, for the
vertical reaction V, and for the fixed end moment M, acting at
the lelt-hand abutment as well as the iniluence line for the bending
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moment M, acting at the crown section. The ordinates to these
influence lines have been found using the above equations for the
rodundant reactions applied at the elastic centre.

‘These influence lines (Fig. 28,11} may be used for the design of
all fixed end arches whose centre line follows a conic parabola and
whose cross-sectional moments of inertia vary in accordance with
the relation specified at the beginning of this article. These influence

Fig. 29.11

lines permit the determination of stresses acting at any cross section
of the arch as long as the loads remain vertical. The following pro-
cedure should be adopted for these computations.

First determine the values of ¥,, & and M, for the given system
of loads multiplying cach of the latter by the corresponding ordinate
to the appropriale influence line. For uniformly distributed loads,
their intensity will be multiplied by the arecas bounded by the
segments of the influence lines, The values of V,, # and MW, will
be then applied to the left end of the arch liberated previously
from all the existing constraints. Thereafter the stresses al any
section will be easily computed assuming that thie arch is a stati-
cally determinate curved beam built in at its right end and acted
upon both by the applied loads and by the redundanl reactions
delermined as explained previously and applied to the left end.

Thus, for instance, if the fixed end arch were acted wpon by Lwo
congentrated loads P; and P, (Fig. 20.11) the bending momont
in any arbitrary section K will be given by

My=Voap—Hys+ M, — Py (2 —ay)

Problem. A parabolic arch {Fig. 30.114a) is acted upon by two vertical loads
Py = 10 tons and P, = 20 tons as well as by a uniform load of two tons per
metre distributed over the quarter span situated immediately to the left of the
crown. Required: (1) the thrust H, the vertical reaction V, and the fixed end
moment M,; (2} the bending moment, the shear and the normal stress acting
at the crown section. The neutral line of the arch follows the equation

p=2L(—o)z=0.2(10—2)z
2
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and the cross-sectional moments of inertia are given by

* T cosqy

Selution, Stm't by constructing the influence line for the thrust H. For this
purpose multiply all the ordinates to the influence line of Fig. 28.11 by the

g=2t/m

(a)
P=10t

li=10m

5

I ; |1
SN YSNYNS S S S

influence line for fixed engd moment M,

i I =
fofluence line for thrust H

Influence line for vertical
. reaction V,

] T EETT
N RRSISOSNRNER
| | nstscﬁﬁscacswcﬁcscsq::s

n separaling these orvdinates remains constant,
ordinates i, and Ly will he given by

£ i ; ;
Tratm which in this particular

case cquals 2 for I = 10 metres and
f = b metres. The influence line
lor the thrust # obtained as just
explained is shown in Fig. 30.115.

The influence line for M, will
be chtained by multiplying all the
ordinates to the appropriate in-
fluence line of Fig. 28.11 by the
span  length 1. The ecompleted
influence  line is shown in
Fig. 30.11c.

The ordinates to the influenco
fine fur V,, in the event of a para-
bolic avch are independent of the

% ratio and thercfore the influence
line given in Fig. 28.11 may he

used without any alterations.
Let us determine now tho thrust
due to the loads indicated in
Fig. 30.41a. TLs value will be
equal to the sam of the product of
each concentrated load by tho cor-
rcs;})t}nding inflneneo line vrdinate
with the product of the area bound-
ed by the influence line over
that portion of the arch carrying
the distributed load by the inlen-
sity ol the latter. The area men-
tioned may he calculated appro-
ximately replacing  curvilinear
segments ol the influence line bet-
ween two neighbouring ordinates
by strai;ﬁht lines. If the distanco
e area bounded hy two

I /i 1
(w)“l =& [;g -+ hn.q-i_'_hfl-l-z_i_ e - km-«{ + -il)

Ilence the thenst I will equal

0.2640
2

H = Py0.1020 L P50.4220 -+ ¢ (

~+0.3310+0.3880-4-

0). 4658

+o.43m+0.45w+T) 0.5= 6.3364 lons
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The magnitude of the vertical reaction ¥, will be obtained in exactly the
Same way

aq s (0:844 ,
Vo= P10.896 -+ 150,061 +¢ (_—+u. 7844-0.718

3
£
.—0.648+0.575+”'2m) 0.5=13.577 tons

Az for the bending moment 17, it will amount to
pa—
:’Il:{u-;f-’i(mﬂ.ﬁxiﬂ)-+P2().2§5+q( 0. .368—0.184 4

2
., 0.312
+0.000 40174+ =) 0.5 —2.586 ton-metres
This being done, liberate the loft end of tte arch from all constraints
and replace the Jatter by the veactive forces just found (Fig, 31.11). The
hending moment acting at the crown section will then equal
i : i I 1
o] B T o B e
M=~ My VoM pl(z 2) 153
+ o - . o 23100
= —2.586~13.577 X 5—6,3304 x 5 —10x 38— 5= —2.0633 ton-metres
The normal stress acting across the same section will be obtained projecting

all the forces Lo tho left of thix cross section on the horizontal: Ny = /f =
= (.3364 tons (compression).

g=2t/m

Py =10t £, =20t

M=§ 3364t

Mg =2.888 tm
Vg =13.877¢

Fig. 81.11

The shear will be given by the vertical projection of the same forces

I 2 x10
On=Vo—Py—q - =13.577 —10~=Z—= —1 423 tons

In actual practice the design of redundant arches for bridge con-
steuction and elsewhere is frequently carried out with the aid of
gpecial tables. Such tables have been prepared for widely varying

o :
geometrical parameters of arches such as their 3 ratio, the law

governing the variation of their cross-sectional dimensions, etc.
The use of such tables reduces very considerably the time required
for computation work and thereby eliminates in a laege measure
the risk of errors always present when calculations are long and
laborious.
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7.11. TWO-HINGED ARCHES

In the case of two-hinged arches the stress analysis is usually
carried out adopting for simple statically determinale structure
the curved bar shown in Fig. 32.11.The equation expressing that
the horizontal displacement along the direction of X, is nil becomes

X+ Ap=0
Por flat arches the values of &; and A;, will be calculated

with due consideration to the effect of mormal stresses, i.e., using
the expressions

]
ds —
bu=2\ M g7+ Mg
0 Q
a— ds s_ s
Ap=2 \ MM, 5553 NiNo

In case direct integration of these expressions becomes too com-
plicated resort should be made to numerical methods or Lo the
method of elastic loads,

Fig. 32, 11 Fig, 33. 11

Cross-sectional moments of inertia in two-hinged arches remain
constant or vary in accordance with

Jo=J.C08 s

where J, is the moment of inertia at the crown section (Fig. 33.11).
Alternatively the cross-sectional areas of ftwo-hinged arches may
vary following the expression

Fe=F,cosq;

where F, is again the cross-sectional area at the crown



12. ANALYSIS OF HIGHLY
REDUNDANT STRUGTURES

{.12. USE OF SYMMETRY

When analyzing the stresses arising in slructures with a large
number of redundant constraints one is usually called upon to
golve a number of simultancous cquations equal to the structure's
degree of redundancy, each of these equations containing the same
number of unknowns.

Let us investigate, for instance, the frame appearing in Fig. 1.12
which consists of two closed contours and consequently is redundant
to the sixth degree. If all the computations pertaining to this frame
were carrvied out, adopting as conjugate statically determinate
structure the one given in Fig. 2.12, it would be necessary to form
and to solve a system of six simultaneous equations with six
unknowns each

X6y 4 X282+ Xbia+ Xubyy + Xobis -+ XeSip+ Ay =0

X891+ Xg8ss + Xg0pa + Xy + X055 + XoOz6 + Aoy =0

X181 4+ X o830 + Xgbas 4 Xibss + X555 + Xgbse + Ayp =0

Xybuy 4+ Xo8ug 4 X85 -1 X iy + X545+ XoOig+ Ayp =0

Xlaﬁl + Xz'ss'z + Xaéss + Xé'ssﬁ + Xaﬁss +Xﬂ5513 "Ir' 55;# =0 ('[- 12)
X Oy - X o032 + Xa0p3 +- X 064 -+ X505 + XoOpg - Agp =0

The solution of such a system of equations would be extremely
laborious and would require a lot of time. The work can be simpli-
fied very considerably due to the symmetry of the structure. It should
be remembered that in @ sypmmetrical siructure not only the arrange-
ment of its members but also their cross-sectional rigidities are symme-
trical about a certain avis. The simplification is based on the pos-
sibility of finding a conjugate statically determinate structure for
which the 7; diagram for cach redundant reaction X, = 1 will
be either symmetrical or antisymmetrical.

Thus, for the frame under consideration (see Fig. 1.12) one could
adopt for simple structure the one appearing in Fig. 3.122. In this

34853
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case the M., M; Mj; and Mg diagrams due to symmetrical unit
forces X,, X3 X, and Xg would be thcmselves symmetrical
(Fig. 3.42¢, d, f and g) while the M, and the M, diagrams induced
by antisymmetrical unit forces X; and X, would be also antisym-
metrical (Fig. 3.126 and e).

[t is well koown that the product of a symmetrical graph by
antisymmelrical one is always nil. Thus, for instance, if one were
to multiply the M, graph (Fig. 3.126) by the M, graph (Fig. 3.12¢)

Simple structure

K1
Rettv agant struclore X f X
e of symmetry ‘!_?z —F
l ,a/ 13
Ky

|
.

H
|

. el b X‘*‘( . e
| £ TX4
Fig. 1.12 Fig. 2.12

the product pertaining to the left-hand half frame would equal
2h 1

~+2h 5 3 = + A% while that pertaining to the right-hand "half
frame would amount to —Zkng—;—= — k%I, Consequently, the

displacement §;, equal to the algebraic sum of these two amounis
will be nil. For the same reason all the other secondary displace-
ments whose values are obtained multiplying symmetrical graphs
by antisymmetrical ones will also reduce to zero.

For the frame under consideration such will be the case for dis-
placements 89, 813, 845, 816y 821, B2y, a1y 834, B4z, 8440 84y Oian O,
854+ 8gs and dg,. It follows that system of simultancous equations
wonld become

Xidyy+ X8y + Ap=0
Xﬂ.ﬁ?s+X3623+X56!5+X5625+A‘1p=0
Xabao + X33+ X 5055 + XoOgs -+ Agp =0

Xior + KB+ Ay =0
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X 3050 4 X053+ X655 + Xobge + Asp =0
X 2069 -+ X 3083 + XsOg5 - Xabos ++ Dop =0
and would consequently fall into two independent systems
XS+ Xbp+ Ap=0 }
Xydus + Xbus+ Agp=0
X2522 _]" X:jﬁ'.ls + x56=5 + Xﬁﬁﬂﬁ + Az;; — D
xﬂﬁ 3 + Xsass—i‘ X?i&ﬂﬁ + X8633 e i\a}‘ et 0
X205 - X 3055 - X 3055 + Xebsg -+ Asp = 0 @16
X362 -} X063 + X 58g5 + Xebos - Aop =0 /
The first of these systems contains two equations with two anti-

symmetrical unknowns and Lhe second four equations with four sym-
motrical unknowns.

(2.12)

Mme giracliove

e

et o Ak Of
T diaiide 4

Fig. 3.12

Thus, the choice of an adequate simple structure of symmetrical paitern
has resulted in the replacement of a system of six simultaneous equations
containing siz unknowns each by two independent systems, the first
comprising two equations with two unknowns and the second four equa-

34+
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tions with four unknowns. This simplifies enormously the computations,
enhancing «t the same time very considerably the precision of the re-
sults obiained. An additional reduction of computation work has
been obtained due to the fact that all the displacements can be cal-
culated for one half of the conjugate simple structure enly. The
total displacement will be the double of that for the half-frame.

fir)

£

W

JJ»\‘J Z:—

%1

@ e R e M

H™\ 2
i Z

e X_j =1
Fig. 4.12

If the symmetrical frame contains a central column, the displace-
ment® due to the redundant antisymmetirical reactions can be com-
puted multiplying at first the diagrams relative to one half of the
frame (without the central column); wherealter the product obtained
should be doubled and increased by the product of graph multipli-
calion pertaining to the central column.

Another example of a symmetrical frame is afforded by the frame
shown in Fig 4.12e. It is casily seen that this [rame is redundant
to the third degree. Fig. 4.120 represents one of the conjugate simple
structures which could be adopted in the present case. This structure
is not symmetrical for the lower ends of the extreme columns have
different supports. 11 follows that the redundant reactions X,, X,
and X; themselves will be also nonsymmetrical. Nevertheless the
diagrams of the bending moments induced in this simple structure
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by unit reactions X, and X, (Fig. 4.12c and d) will be symmetrical
while the diagram of the bending moment due to X3 = 1 (Fig. 4.12¢)
will be antisymmetrical.

Consequently, for the given simple strnctures the simultaneous
equations will again fall inte two different independent groups
X+ Xobya+- Ay =0
X851 X822+ Agp =0 and X855+ Ay, =0

jusl as though all the unknowns were symmetrical or antisymmetrical.

2.12. GROUPING OF THE UNKNOWNS

IT the structure which is being analyzed consists of several spans
it becomes inpossible to transfer the points of application of all
the redundant reactions to the axis of symmetry (Fig. 5.12q).
However, symmetrical and antisymmeirical bending moment diagrams
may still be obtained if ithe unknowns representing a single force or
couple are replaced by unknowns representing whole groups of forces.
Let us examine, for example, the six times redundant frame appear-
ing in Fig. 5.12a. Should we adopt for conjugate simple structure
the one appearing in Fig. 5.12b we would have to solve six simulta-
ncous equalions with six nonsymmetrical unknowns X, X,, X.,
X, X and X4 given below

X B+ Xobya+ Xy + Xubis+ X85+ Xobig+ A =0 )
X835 4 XoBg0 4~ Xgbas+ X ibau + X0y +4- Xobag + Agp =0
X 4831 4~ X 2852 -+ X g5 -+ X B34 -+ X 5855 + X836 + Asp =0
X8+ Xobsn+ Xy + X8y + Xsbis+ Xobis +Asp =0
X054 = X852 ‘|“X3653+ X850+ X855 + X6655+A5p =0
X861+ X oy + X38g 4 Xibag 4+ Xa0e5 -+ Xoos + Agp =0 J

I'n these equations none of the coefilicients § would normally equal
7ero.

On the other hand, if the groups of unknown forces %, Z,, Z,,
Z4 Zy and Z; shown in Fig. 5.12¢c were adopted as the unknowns,
a very large number of secondary displacements in the simultaneous
equations (4.12) would reduce to zero, for these displacements (coef-
ficients) wounld result from the multiplication of symmetrical graphs
by antisymmetrical ones. Here the unknown Z; represents two ho-
rizontal forces X, and X, equal in value and opposite in sign, the
unknown Z,—two horizontal forces equal both in value and in sign,
Zy—two vertical forces of equal amount, both directed upwards,
Z,~—two vertical forces equal in amount and opposite in direction,
Zs—two conples equal in amount and opposile in direction, and
Zg—two couples of the same magnitude and acting in the same di-

(4.12)
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fa) Redundant structure

(b} Simple structure

fe) Simple structure
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rection. The bending moment diagrams due to the above groups of
unit forces are given in Fig. 6.12. It is readily observed that the
M,, M, and M, diagrams are symmetrical while the M,, M, and
M, diagrams are antisymmetrical.

Comparing the two simple structures appearing in Fig. 5.12b
and ¢ we realize that the following relations exist between the un-
knowns X and Z*

X|=Zl—l*zzi X,=2,—2,
Xo=Zy+ 24 Xs=Z3—Z,
Xy=125+Zg; Xog=Zy—Zg
The above relations may be rewritten as follows
Zm DL, 7 R
Z,:X‘;X"; Zs=x3'§‘]"“

Grouping the unknowns as indicated above permits the replace-
ment of a single system formed by six simultaneous equations (4.12)
by two independent ones (5.12) and (6.12), the first containing only
symmetrical unknowns and the second the antisymmetrical ones.

(a) The first system

Zy (844) + Z5 (B43) -+ Z5 (8y5) + (Agp) =10
Zy (8s1) + Zg (833) + Z5 (835) 4- (Asp) =0 } (5.12)

Zy(851) + Z3 (853) + Zs (835) + (Asp) =0
(b) The second system

Zs (822) + Z4 (824) + Zo (B95) 4 (A2p) =0 (6.12)
Z o (B8uz) + Z4 (84a) + Zo (Su0) + (Aip) =0 )
Zy (8a) + Zy (B6u) + Zg (Bas) + (Agp) =0

It is clear that in the above expressions the coefficients (§;;) and
the free terms (A;,) represent the displacements induced by and
along the aforesaid groups of unknown forces.

We have thus succeeded in reducing a system of six equations
with six unknowns to two independent systems of threo cquations
with three unknowns. The work required to solve the latter systems
will be less important than that needed for the solution of the ori-
ginal one, Hereafter we shall denote by the sign X all the unknowns

+

*The construction of stress diagrams does not require the determination of
the unknowns belonging to the X group.
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regardless of whether they represent single forces or whole groups
of forces. We shall equally omilt the parcntheses introduced into
equations (5.12) and (6.12) in order to distinguish the displacemenls
due to groups of forces from those due to a single action.

The determination of displacements arising in a statically deter-
minate structure under the action of geoups of forcesis no more com-
plicated than that of the displacements produced by single actions,
These displacements will be computed as usual, multiplying dia-
grams pertaining to one half of the structure and doubling the
result obtained. If the frame contains a central column, graphs per-
taining to one half-frame (excluding the central column) will be
first multiplied one by the other, the produet will then be doubled,
and the result so obtained will be added to the product of graphs
for the central column.

3.12. SYMMETRICAL AND ANTISYMMETRICAL LOADING

If the syslem of loads acting on a siructure is either symmetrical
or antisymmetrical all the computations are further simplified,
because in this case it becomes possible to find a conjugate simple
structure for which the bending moment diagrams due bhoth to the
unit actions and to the actual loading become either symmetrical
or antisymmetrical. As a result, a number of free terms of the si-
multaneous equations together with some coefficients to the
unknowns will reduce to zero.

l.et us examine the frame of Fig. 7.12a. This frame is redundant
to the sixth degree and is acted upon by a system of symmetrical
loads. A symmetrical statically determinate simple structure with
symmetrical and antisymmetrical unknowns may be obtained cut-
ling in two the upper crossbar and eliminating three constrainis
at the supports as indicated in Fig. 7.12b. The redundant reactions,
which cannot be transferred to the axis of symmetry, such as
the horizontal components of the left- and of the right-hand
column reactions will be replaced by two groups of forces X,
and X;.

The bending moment diagrams for the conjugate structure due
both to the wnit actions following the direction of the unknowns
and to the actual loads are shown in Fig. 7.12¢, d, ¢, f, g, 2 and i.
All the unknowns being either symmetrical (X, X,, X3 and
X,) or antisymmetrical (X; and X}, the simultancous equations
will form two independent systems given hereunder

Xby+ Xobip -+ Xabyy -+ Xi8ys + Ay =0
Xbay 4 Xg8r 4+ Xabsp+ X (Bos 4 Azp =0
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X 1831+ Xabsz + XoOss+ Xibay + Agp =0
X8y + Xabia+ Xabsa+ Xibis + Ay =10
KOs+ Xabse +Asp =0 }
X865+ Xobos + Agp =0 (7.12)

In the last of the two systems the displacements Ay, and Agp
are both nil, their value being obtained multiplying antisymme-
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Fig. 7.12

trical graphs M and M, by the symmetrical graph M, due to the
applied loads (Fig. 7.12i). Consequently, these two equations be-

come
Xibgs+ Xebse=0
X865 -+ Xebag =10
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which indicates that both the antisymmetrical unknowns X and
Xg are also nil. Were the frame of Fig. 7.12e acted upon by a sy-
stem of antisymmetrical loads it would be the symmetrical unknowns
thal would become nil.

Generalizing the above we may formulate the two following rules:

1. When a symmetrical siructure is acted upon by a symmetrical
system of loads only those of the unknowns which represent the symme-
trical redundani reactions remain different from zero, while all the
unknowns representing antisymmetrical reactions become nil.

2, When a symmetrical structure is acted upon by an antisymmetrical
system of loads, only those of the unknowns which represent the anti-
symmetrical redundant reactions remain different from zero, while
all the unknowns representing symmetrical unknowns become nil.

4.12. LOAD TRANSFORMATION

The two rules formulated ahove are applicable to any symmetrical
structure regardless of the actual distribution of loading, for the
simple reason that any system of loads can be easily replaced by an

¥

Pt

s o d zzd
Fig. 8.12

equivalent combination of two scparate systems, one of which is
symmetrical and the other aniisymmetrical.

Indeed, let us consider the symmetrical structure of Fig. 8.12
acted upon by onc concentrated load P and the uniformly distrib-
uied load of ¢ kg per unit length, both are nonsymmetrical. The
two loads may be replaced by two groups of components appearing
in TFig. 9.42¢ and b, the first of these groups being symmetrical and
the second antisymmetrical. It is clearly seen that the superposition
of these two systems of loads leads to a loading absolutely identical
to the original one shown in Fig. 8.12.

We have seen in the preceding article that when a symmetrical
siructure is acted upon by symmetrical loads alone the symmetrical
unknowns remain different from zero. Consequently, for the simple
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statically determinate structure (Fig. 10.12a) acted upon by
the loads appearing in Fig. 9.12a only the symmetrical unknowns
n ~ -

Z 7 7§ 21
b G HnG £ ¢ dEnpmi

raley

Py

AARREERTRLIDS:

¥
Z

oo o Ly ™ = -
fal 4}

Pig. 8.12

X4, X, and X, must be calculated. The corresponding equations

become
Xiﬁu + X2612 +Xa‘3w + A:p =0

Xy0oy + Xobgy + XaBaz+- Agp=0
X1631 + Xaaas + Xaéss 1 &33: =0

For the same reason the system of loads appearing in Fig. 9.125
applied to the simple structure of Fig. 10.126 will provide three

£ 2 [
7 o a ki B
IEX SN EEERERERERELRLI 7 IEI i
9'/ IELEEEER S
7 a
X b ¢ X 5 *s
. ] & i
- 3 A —\—"‘ "'|7 ¥
_\, ’,/‘ k \__/‘ %
Xz Xa X3 _ 'Xf
(&) it
Fig. 10.12

antisymmetrical unknowns X, X; and Xg, all the other unknowns
being nil.
Consequently, these equations become

Xibus + X585+ XoBuo+ Aip =0

XS5+ XsBs5 + XeSsa -+ Agp=0

X&BGQ + X5635 + X8508+ Aap= 0

It should be observed, however, that in certain cases the replace-

ment of loads by their symmetrical and antisymmetrical compo-
nents may complicate the computations instead of simplifying them
and consequently the application of this procedure canmnot be re-
commended uncoaditionally.
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Fig. 11.12a represents a symmetirical portal frame loaded by one
nonsymmetrical forco P. If we adopt for simple statically deter-
minate structure the one shown in Fig. 11.12b, the simultaneous
equations will fall into two independent systems, one containing
a single antisymmetrical unknown X, and the other two symmetri-
cal unknowns X, and X,.

Nevertheless, it is much easier to conslruct one diagram of the
bending moments due to the single load P (Fig. 11.12¢) then two
bending moment diagrams due to its symmetrical (Fig. 11.12d)
and antisymmetrical (Fig. 11.12¢) components. However, in the
first case the displacements A,, and A, will be compuled multip-
lying the bending moment graphs pertaining to both columns while
the use of diagrams of the symmetrical and antisymmetrical com-
ponents will permit the multiplication of bending moment graphs
for one of the columns only. On the other hand, the M5 and the
M'% diagrams are somewhat complicated in outline and for multip-
lication purposes they must be subdivided into two portions, one
rectangular and the other parabolic, which would be unnecessary
were the original loading retained. .

On the whole, in this particular case the replacement of the load 2
by its symmetrical and antisymmetrical components will make the
calculations rather more complicated instead of simplifying them.

Let us now investigate the frame represented in Fig 12.12a loaded
by one horizontal force P. The degree of redundancy of this frame
is equal to six.

Fig. 12.12b and ¢ shows the same structure loaded by the symme-
trical and the antisymmetrical components of force P. The sym-
metrical components will cause no displaccment of the top point
of the central column and consequently we may admit that this
point is held fast as shown in Fig. 12.12d. Hence the structure given
in the latter figure can be adopted as conjugate simple structure for
the case under consideration. The bending moments induced in
this structure by the symmetrical componenis of load P will remain
nil throughout and therefore the displacements A produced by
these components as well as all the symmetrical unknowns must be
equally nil, The same will apply of course to the antisymmetrical
unknowns.

It follows that all the frame members will be acted upon sololy by
bending moments induced by the antisymmetrical components of
load P shown in Fig. 12.12¢.*

For the Iatter system of loads we may adopt the simple statically
determinale structure represented in Fig. 12.12¢ with unknowns

4

*#Strains due to direct stresses are neglected as usual.
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formed by the groups of forces Xy, X, and X,. Thus, for the frame
of Fig. 12.12 the transformation of the applied loads into their

fai "XJA

-N:
e
L=

Fig. 12,12

symmelrical and antisymmetrical components leads to the reduc-
tion of the number of the unknowns from six to three. The resulting
simplilication ol all the computations is therefore quite considerable.

3.12. ACCURACY CONTROL OF ALL THE TERMS
ENTERING THE SIMULTANEOUS EQUATIONS

It will be remembered that the coefficients to the unknowns and
the free terms of the simultaneuos equations represent displace-
ments induced in the simple statically determinale siructure by



.12, Aceuracy Control of Equations 543

unit forees acting along the direction of the unknown reactions, as
well as those due to the actual loads. Thesc displacements are usually
obtained through the multiplication of the corresponding bending
moment diagrams. Errors which oceur while carrying out ihese
operations influonce further calculations and therefore render er-
roneous the wvalues of the redundant reactions finally obtained.

krrors in the displacement values can be usually detected using
the procedure described hereunder. Suppose that for the analysis
of a structure redundant to the nth dogree reactions or groups of
reactions X, X,, ..., X;, ..., X, have been adopted as the
unknowns.

Let us apply to the simple statically detcrminate structure all
the unit forces corresponding to these reactions and let us construct
the diagram of the resulting bending moment. We shall call this
diagram the summary unit bending moment diagram designating its
ordinates by A7;. In any cross section the ordinate 37, will thus equal
the algebraic swm of all the ordinates M, M, ..., M,, ..., M,.

If we multiply successively the /7, graph area by the unit hend-
ing moment diagrams M, M,, ete., each of the products thus
obtained will be equal to the algebraic sum of all the coefficicnts
to the unknowns of the corresponding equation because

i=n

Z 61i=6“—|—612+613—]— v +6in = 2 S jl_]’?!Hl_‘,':;-L_::r"|_

t=1
+ 2T+ o+ D T
=% SM:{M1+M3+... +MH)W=2§ M T, -

For the same reason we may write
81+ 8aa 4825+ . .. -+ 82n =8y,

It follws that the algebraic sum of all the coellicients to the
unknowns contained in equation i munst he equal to 8;; where

Bip=3 S M, (8.12)

Hence the values of all the unit displacements forming the coel-
ficients to the unknowns of the first of the simultaneous equations
can be checked comparing their sum with the value of 6,

=Tl

2 8u =0, (9.12)
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The algebraic sums of the coeliicients to the unknowns of all
the other simultaneous equations may be checked in exactly Lhe
same way.

The above proccdure permils us to verify the coefficients to the
unknowns of each eguation separately. Lel us now sum up all the
values of 84, 825y - . ., Ons denoting this sum by £8. In that case

zb z‘sls"‘l‘aza +638+ LR +6ns
But since

o @55 ap O
613: SMl S'E_jr"

¢ — — g
Soa=2\ M0,

we find that
ds

6=3 SET'I‘TJFXS IMygr+ - -
s o ——
et 2 MM =3 \ WL+ Mot 47 7 =
=5 I = 6.
Cansequently
s e U v
T S Migr (10.12)
and
28=205 (11.12)

The last cxpression permils a simultancous check on the accuracy
ol all the coelficients to the unknowns contained in all the cqua-
Lions of the given system. This check will be carried out as follows:
~ (a) Find the algebraic sum ol all the coeflicients to the unknowns
(unit displacements) conlained in all the equations of the given
system
28 = [51-1 +‘522“} f‘:u;'|‘ seae 5rm) ‘1'2 (612+61:;+ “es

“na —5—61,1 4—623 -}—6g;+ PR ‘{f’ 6271"“‘534 ""l_ LR “}"63—1,!1]
ln the above expression the first in parentheses contains all the
principal displacements, i.e., those situated on the main diagonal

and the other term all the secondary displacements situated on both
sides of this diagonal (i.e., on secondary diagonals).
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(b) Using the method of diagram multiplication find the values of

= s
G.SZZS.{WSE—J
(¢) Compare the two values obtained as described above.
In a number of cases the following inequality may help in
linding the erroncous coefficients to the unknowns

O5i X Bgn 2> O

The control of the free terms of the canomical equations will
be carried out in a similar way:
(a) First compute the value of

N S MM, o= (12.12)

where M, represents ithe bending moments induced in the conju-
gale simple structure by the actual loads.
(b) Check whether

ZA=Aip+Agpt oot Anp=Asp (13.12)

In general it is quite sufficient to verify simultancously the coef-
ficients to the unknowns of the whole system of equations. If this
check reveals an error, it is recommended to verify these coefficients
equation by equation as described at the beginning of the present
article.

6.12. ABRIDGED SOLUTION OF CANONICAL EQUATIONS

Hereunder we shall describe very briefly the abridged method
of solving simultaneous canonical equations which was proposed
by Gauss. In this method the unknowns are eliminated one by one
using a set ol certain coefficients, All the operations are carried
out in tabular form and checked constantly.*

Let us consider four canonical equations (1), (2), (3) and (4) with
four unknowns,**

It will be remembered that each pair of coefficients to the un-
knowns symmetrical about the main diagonal are equal toone anoth-
er as stipulated by the theorem of reciprocal displacements. The
free terms have been transferred to the right-hand part of the equa-
tions and are denoted by K,, K., ete. The solution of this system

*In this book we shall not consider the *“unabridged” method of solving
canonical equations, the latter being seldomly used in siress analysis of redun-
dant structures.

**The first of these four equations will be designated by a Roman figure.
35—B53
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ol canconical equations will be carried out as indicated in Table 1.12.
All the entries in column 1 can be made off hand. The number of

G2
G Seconizary diagoncly
R
X8y +/de}1 '*,.4‘335; X0, =k 1)
2 L : Ber -
X8y Koy */Xaé‘zz“ KeOps= Ky (2)
# Pl / -

- S S
B X6 + Kby f/{fj%‘*:\';,ﬁaé: Ky (3}
=2 -

/Xré\fd * Kol + XaBia# KoBye= Ky (4)

sl Srete L .
Secondary dwaganals %’_439;,
&

columns and lines of the table is directly dependent on the number
of simultancous equations. Thus, for instance, if our system con-
tained five equations instead of four we should have nine columns
instead ol the eighl conlained in Table 1.12. These nine columns
would be under the following headings: Equation No.; X X,
X3 X,; Xs; multipliers o,;; S, and K. Similarly instead of 13 lines
of Table 1.12 we would have 19, these lines being designated by
(I): (2); (1) ragp: (ID:(3); (I) -aays; (IT) -@pa; (TII); (4); (T) -@y; (1) - gy
(I -ass; (TV); (5); (D) -0us; (ID) 055 (IIT) -oap; (IV) c@ys; (V)

Ilaving prepared the table, enter the coefficients and the values
of K taken directly from the simultancous equations into lines
(), (2), (3) and (4). No entries are made at this stage in the column
for the multipliers a;z. Column § will be filled in with the values
of sy, 2, §3, - . -y 8 Which represent

8, =0y +8a+854 ...+
$a= 001+ 822+ Bas+ . . . 4+ O2n, etc.

Further operations are carried out in the following sequence:
(a) Compute the values of ays, 043, and @y, using the expressions
indicated in the corresponding lines under the heading “multi-
liers o;4".

(b) Fill line (I)-ay, with the values of the products obtained
by the multiplication of all the entries of line (I) by ..

(c) Calculate the values of 8, 6, etc., given in linc (II) adding
two by two the entries contained in line (2) with those of line (I} - @4,.
No operations are carried out in eolumns X, and “multipliers a;z".
(d) Procceding in the same way determine the values aps, gy,
etc., using expressions contained in the column “multipliers @;,”.

Gradually the whole of the table will be filled in that way. Whe-
never it is known beforehand that the value of an entry equals zero,
this entry is replaced by a dot. Such is the case of numerous entries



L T AD
i %o (111)
- s . o (f1) +
i . . U 4-3.A.—W
-1 X : . s
s st_é . e
S it . i
tip g Yip. ¥ erg (rn
Yo S0 Yty . .
Yenty iy 5 ’ #-(11)
Yin! g Sy o m.m : nu«cﬁ%n_u i
Ty, ae =%y " i )
= i3y %% = i i
Eg e iy ¥ig £hp.Ehg 2tg ¥
iy £in-y erg
Eenty "9 .
. Pty fiplg 9 .
Eiphy £y o .
&y vy et 15y : wa ‘ﬁ +
- . . €
& i Sig.2lg 54
ig @3 — =%, el Ey g ¢
Y " @07 =
vag
Ghglgr w
ipiy gy e
iy L - e W
i g .
g =%ln ;
|«.._|m.|| "ON ueijenby
he 41 elp X
_.V- |@| = nM‘
Trg T X
P .
1y srendpimig
g
b

ar'r 21avg

35



048 Analysis of Highly Redundant Structures

in lines (IL), (LI1) and (IV). Each of the lines marked with a Roman
figure represents onc of the equations to be solved. Thus, for instauce,
line (T1I) represents the equation

Kby, + X6, = K,

When all the operations arc carried out correctly the sum ol all
the coelficients to the unknowns of each eguation will equal the
entry in the same line in ¢column S. Thus, for instance, for equation
(ELTY it must be found that

8+ 85, =53

This conirol should be carried out each time the corresponding line
has been completely filled in.

The last of the equations {in our case cquation (IV}| will contain
only one¢ unknown yielding the value of X,. Equation (TT[) con-
taining two unknowns X; and X, will be easily solved leading
therealter 1o the solution of equations (II} and (1) thus providing
the values of the unknowns X5, X, and X, in suecession. The final
results are checked by the introduction of all the unknowns thus
found into the original system of simultaneous equations.

To illustrate the above let us use the method just described for
the solution of the following equations

2X,—X,+3X;—X,=5 (1) S;=2—1+43—1=3
— X+ 3X,—2X; -5X,=—21 (&) S;=—1-+3—2—0H=-5
3X,—2X,—5X,;+4X,=0 (3) §3=3—2—-5+4=0
— X, —0X,+H4X; - X, =5 (4) Si= —1—5+4+1=—1
All the coefficients to the unknowns ol these equalions satisfy
the prineiple of reciprocal displacements. The abbrevialed solution
of this system of simultaneous equations is contained in Table 2.12.
FHaving filled in this table, proceed as indicated above with the

solution of the equations contained in lines (1), (11), {III) and (IV)
starting with the last one

575 2800 . o _
9 44 12 124176
PR B 1 AT, !m e e * — —— . —
1o 23t X4 o+ Xs % 8

2.5Xy=—1854053x3455% 4 X,=2
2X,=0+2—3x3+4 X;=1

To verify all the operations enter the values of the unknowns into
the original equations.
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Table 1.12 shows that an alternation in the values of the free
terms will be reflected only in the entries of the last column K.

For this reason the method just deseribed becomes particularly
well it for the styess analysis of redundant structures when these
are called upon to carry different loads.

7.12. SEVERAL PROBLEMS IN STRESS ANALYSIS OF
REDUNDANT FRAMES

Problem 1. Construct and check the M, @ and N diagrams for the double-
span symmetrical frame shown in Fig. 13.12.

Solution. The frame is three times statically indeterminate. Fig. 14.12
shows one of the simple structures which could be adopted for the solution
of the problem. However, that would involve the simultancous solulion
of three equations wilh three unknowns,

The problem will be considerably simplified if the unknowns are grouped
as indicated in Fig. 15.12. In the latter case the canonical equations become

X 01+ Xodya+ Agp=0
X yboy - Xoboo+Azp=0
Agbagt+Asp=0

The unit bending moment diagrams M,, M, and M, corresponding to the
cuse under consideration are given in Fig. 16.12e, b and ¢ while the diagram
due to the applied load is presented in Fi%; 17.12.

Multiplying the appropriate graphs one by the other we shall obtain the
values both of the coefficients to the unknowns and ol the free terms of the
above equations. It should not be forgotten thut the moments of inertia of the
columns are only half as great as thoso of the crossheams

o a 2 1 1 Had
bu=2 (e g gagytecs oy ) =5
B ® 2a a _ ad
2= BET, AR,
g W 2 & A . BN
» 523 2 2BY,  12EJ,

e B Wy 1 a 2 i . ad
Bag=2 (“T'?“_E?TT'“'“'“ EEJT)+2“? 32 7 =T,

3Pa  2¢ _a n__3Pa5

Bip g 2 B $EET;
1 3P2 a 1 2 a 6 @ 3 a
b= —ggr |5 T T T T e (PE Tt
1 e 3 i, oA gN, 4 a 2 a7 _  11Pd®
+2 P g Pt Pag g Pag g |~ —TeET,

3. .4
(1p g g, TR g & _a_)i___@s_
glag-5+ ) 77 P53 ) 257, 1687,
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The displacemonts thus computed will be checkod using the “summary™

unit hending moment disgram M, due to the simultaneous application of all
the unit forces acting along the unknowns {Fig. 18.12).

/,ga
[ Nl
T L
' Lm%m 2a
e &
20 =
0 ®
Fig, 17.12 Fig. 18,12

The value of &, is obtained raising to the sccond power the 3, diagram:
—, ds a2 a 2 a a 5 9
-3 qoae | MR, B g 0 D
Bss "SMS ET [2 73 T T (2‘“ asF

5 1 a 2 2a 2108

I I e —— D2 S &287

2202042 - 2a)] D
Checking that condition (11.12) is satisfied we find

21a8 Ha? a? Jas

ad
— y .
AT, 3B, TmET, T Eh Ty, o
2123  21aq®
BT, GET,

It follows that all the unit displacoments are correct.

Liet us determino now the value of Asp multiplying the 37, diagram
(Fig. 18.12) by the M, one (Fig. 17.12)

— ds —1 3 A T
.-_\,,p:z SMsﬂfﬂﬁzm[*—s-ﬂpﬂ-—g—oT-—:i—vT-l-
L G . B a 1 e , 3 a 1. Ta
g (25 Per p g Pacg +g e tplue ) +
1 a (2 5 1, 35Pa3 1
+'&“‘°“'“§“(‘3"?“'*‘?2“)]=—1—92m7
Check whether condition (13.12) is also satisfind
_ Ap=ZA
d5Pad  _ 8Pad  11Pad . Pad 35P0%  35Pad
T ARET, T T ABET,T T92ET, 166V, 7 T TwE s, T T 1BET,

This indicates that the displacements due to the applied loads are also cor-
rect, We may now introduce the values of the coeffieionts to the unknowns and
of the free terms into our system of canonical equations. Multiplying the first
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6

two of these equations by 7 and the last one by1

L E;J‘ we obtain
& a

320X, + 48X, —36P =0
48X (416X, — 112 =0

48X, P=0
The solution of these three equations leads to
ap 7P : P

Zy=ggi Kp=

7 Hise—gr

The construction of tho resulting bending moment diagram for the given
redundant structure witl be carried out in the following sequence. First, deter-
mine the bending moments inducod ia the simple structure by the redundant

7Pa
'ﬁ\liz
aq 3p0 /ﬂ’flrﬁ g
176 Wl Y6
My Ly
i3 A 75 i 7P
& /,’;2’7 e }_;
Fig, 79.12 Fig, 20.12

reactions Xy, Xp and X5 obtained above. For this purpose multiply all the

ordinates to the unit bending moment graphs My, M, and M; by the respective
magnitudes of these renctions. The three diagrams thus obtained are represented
in Figs. 19.42, 2042 and 21.12.

The ordirnates to the resulting hendin% moment diagram can now be obtained
summing up the ordinates to these three diagrams with those to the M, diagram
given proviously in Fig. 17.42. (In Fig. 13.12 we have marked by an asterisk
those of the ends of the columns which are considered as being the loft-hand
ones for the construction of bending momoent diagrams.)

3Pa 7Pa Pa 3Pa 47Pa

Mep=Mop=—"m—~z — g+ =
JPu Pa 50
Mpa=Mpo= —~f7+0——g+0=—
3Pa 7Pa Pa Py TPa
Moe=—Tm o BT T ="
M ___3Pa TPa Pa Pa 17Pa
PE=""106 ~ 22 " 4% VATV
P P
MDG=0+0-|-‘—2:+@=.?E_
3Pa . Pa Pa
¥ zp=Mpy=——qm +0F 35 +0=35
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In all the ahove expressions Mp4 denotes the bending moment at cross
section B of member BA, M 5, denotes the moment at cross section B of member
BC and so forth.

The diagram of the resulting bending moments plotted as explained above
is represented in Fig. 22.12. In order to check the accuracy of this diagram

et us compute the mutual displacomont A pe of points F and G (see Fig. 13.12).
This displacement must be necessarily nil for beth puints are held fast by the
supports of the frame.

n order to find the said displacement wo shall eliminate all threo constraints
at the lower end of the right-hand column, transforming thereby the right haif
of the structure into a statically determinate polygonal beam shown
in Fig. 23.12. Let us now apply two unit forces acting along the directions

Lo
“8

[EREAI

@

A

&

7.

Fig. 21.12 Fig. 22.12

of the desired displacement. The bending moment diagram duc to these forces
is shown in this figure. Multiplying this diagram by the diagram of the resulting
bending moments given in Fig., 22.12 we obtain

a Pa 2 1 17Pe 1 Pa 1
Apom —tip o gt g — g X

a 2 Pa i Pad (_1 17 1 11)_20

{, R et o o S PR I—

1
e i ey o L i, el
X3ET, N S B it T T 7 T (S TR e

It will be remombered that the product of the resulting bending moment
graph of Fig. 22.12 by the unit diagrams given in Fig. 16.12 must be also nil.
Let us proceed now with the determination of the shearing forces

—5Pa

Qecnp=Cpc= -—(—T.é’.ﬁ—“-_s,. %) _;Ez _ ':féz
Qou=Cgp= (%4—%) %=%
Qrr=0Qpp= -—E‘I;%—._;I_=,__T-gz_
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The signs of the shearing forces can be checked remembering that the shear
is reckoned positive when the axis of the eloment must he rotated clockwise
through an angle smaller than 80° in order to come in coincidence with the
tangent Lo the bending moment diagram at the section under consideration.

i
3p

a{ [} Iciel "
_ % (Bl

® ©fdguwh

O e H
72«
7 O
S e 2 2
: 732 74 264
Fig. 23.12 Fig. 24.12

The magnitudes of the shearing forces @ obtained above have led to the

construction of ihe diagram shown in Fig. 24.12.
The values of the normal forces will be derived from the equilibrium

of joints B, D and E isolated in succession (Fig. 25.12¢, b and ¢). In these

s7P zP g ;
137 177 44 gg
8 l Ngo Ngﬂ' l ) NDF "I“:f'.l'r' t £
Fy— T il =
— e P ——)-2-3.-;
50~ l J 24 l
274 ™ Npg W
{a) (6) fe)
Fig. 25. 12

computations unknown normal stresses will be always reckoned positive,
i.o.. causing the extension of the corresponding member. The values of shearing
forces are taken directly from the shear diagram of Fig. 24.12. The equilibrium
equations become:

Joint B (Fig. 25.12a)

51P

EY= "_NBA ——13—2— =0
whoerefrom
97P "
Nga= — T3 {compression)

5P 5P .
EX=W+N39=0 therefore Ngp= ~ 135 {compression)

Joint D (Fig. 25.12b)
Y = =Npg——a———=0
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wherefrom
T
Npe= —1—’: (compression)

2X= —NDB—I—N,:,E—%H—-.D but since Npg=~Npp
we finally have
Npg = T};— —%— . —2%4— (extension)
Joint E (Fig. 25.12¢)
EY='%—NEF=O wherefrom NEF=%}— {extension)

EX:—NED+-2—£&-=0 therefore NED=

2'::4 (extension)

Since Npp = Npg the latter rosult may be regarded as confirming the
ccuracy of previous computations. The diagram of the normal stresses given
in Fig, 26.12 has been constructed using tho data just obtained.

P
o W
732 ~{IITITIT o p— 4 g £
==
T VENEREY,
@ ig 2z
ﬂgfm“f% . %‘ED—-)- —— = —-;-J'/
] — 2% 5% #3;:
= | -
57 . 87° 77 o*
192 1 4 JZ 7
Fig. 26.12 Fig. 27.12

Lot us check tho accuracy of the M, @ and N diagrams using the method
based on equilibrium considerations. Isolating the upper half of the frame
woe must find that the actual loads applied to that part of the structure are
bulanced exactly by the stresses acting at the cuts, i.e., at midheight of the
columns (Fig. 27.12). The values of thoso stresses will be scaled off tho corre-
sponding diagrams (see Figs. 22.12, 24.12 and 26.12). Indeed we find that

5 P _p P
X =155 —3r * 755 = g% (10— 1+ 1)=0

57P wr 3P P

Y = = P e — [ — S —_y =

Y = =P ot — g =gy (— 132+ 5T+ 84—9) =0
; 52 P Pya _a
M=) TP T

P ap 5Pu Pa Pa
Tttt s s T

=5P_2‘; (— 40411 —1 4264 — 336+ T2— 10411 — D =t

Hence all the eqnilibriam requirements are satisfied.
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The M, ¢ and N diagrams could he ohtained using a somewhat different
procedure. Tndeed we couid upply to the conjugate statically determinate
strueture the redundant reactions

3P , 1P -

Biscpps  Haveppe AR Eece
togethor with the actual loads as shown in Fig. 28,124 and b. Thercafter wo could
calculato the values of the reactions developed at the supports of the latter
structure under the simultancous action of all the forces mentioned abovo.

— [ e

£ 3P, 7 m“?_‘o e

w137 176 48
Fig, 28.12

The diagrams of the bending moments, shearing forces and normal stresses
obtained in that way for the simple statically determinate structure would
coincide exactly with the corresponding resulting stross diagrams for the given
rednndant  structure.

Problem 2. Required the complete stress analysis for the two-story frame
of a factory building loaded unsymmetrically aleng the top crossheam. The
different regidities of all the frame members are indicated in Fig. 29.12.

a0 g=2t/m
=2¢/m X
Wil 7 X 5
z 27 ) ¢ K e
i —’(;x‘? Ky M
1= J
- A
3 P A v
- |& T"/f !
S 4L
o |2 = L
S|\ Redundant ]
5 Simpile
struecture Structure
7 Z 7
14, om L o
(a) HJJ
Fig, 29.12

Solution. The conjugate gimple structure will he obtained sectioning hoth
crosshoams at midspan (Fig. 29.125). The bonding moment diagrams due
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to unknown unit forces are given in TFig. 30.12. The diagram ol the bending
momenls induced in the same simple structure by the actual loading is given

; o G
K=l Xl ot 1l “"'I‘ifir I""; (X’x?’“?‘r
HAd 0 s H |
E ® A ®
H 5 e 7 7
e Sad = 4k
iy O i #
K IY (5 I 1 [
T =t T e
'1‘5 lef Sl A ?
2 & F %)
.7 3= 7 7
foora s ';J; >
le) (7
Fig. 30.12

in Fig. 31.12. Owing to the proper choice of the simpls structure all the follaw—
ing secondary displacements reduce to zero

812 O45,  B23 D25 O2e  Base Oy Bud By

7 z2
Fig. 31,12 Fig, 32,12

In this case the systom of simultaneous equations will {all into two separate
groups, the first containing four unknowns out of the six und the seeand two
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unknowns only:
(a) the first group

Xdyy+ X0+ X by Nebrg= —4yy
X014 Xabyy =X g+ Xodga= —Aap
Kb+ Xgbya+ X O+ Xegbyg=—NAyp
X601+ Xadsa+ Xudae+ Nadea= —Asap
(b) the second group
Xobag+- Xsbos = —Agp
Xobpg - Xgbgs= -—.&_:,P
All the displacements will be caleulated assuming that EJ==1 ton sq m

43 4
buy="5—X %—x&xi+-—{2x42-1—2><102+2x4><10),———35’

4
dp= >j xlx——l—ﬁx l""mxix——ss

2
6xb 2 2
dge=—5 (4-%-5“%(5) - =144
513=‘+10XGX1X—2-=42

633=6x1><1.x-%—+4x1xix2+6x1xix1-=-17

B B;fﬁ x—.:—x2=18

6%=lxﬁx%x2=€}

O4= BXB X g x6x~—72

2
Bxﬁ
3 X 2 % 2=18

Sgp=—5—

6as=6x1x1x7+6xix1x%x 2=175

x3 2 1

- 32 Ko XIX g X2+AX XX 246X I X8 X 1 =135

53‘,=3x5x3x.1..><2=54

2
H 1
8= X B XIX T X2HEXBXIX 5 X 2=58.3
__4x4x9 6(104-4) X9 _
Mp=——5%7 Ay

9x3 3 6X9I%3 _
azp_—sxszxa—ﬁx9><3 g —199.12
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Ix9x1 4%x9x1 6HxIxi

B iy e g a0l
6X6X9
Yag=="gmp T
Aﬁp=_____ﬁxgx3 =—= 81

Agp= _m= —27
In order to check the values of these displaceinents construet the summary

unit bending moment diagram 3, due to the simultaneous action of all the
unit reactions shown in Fig. 32.12. The value of b4, will be obtained raising
to the socond power the M, diagram while the value of A, multiplying the
M, diagram by the M, one
o ds G 5 . [
6
6x2

&
%1
6 4
2 LA | i ST s LA Ha 1 L
g @X A HIX B =X 2X2) by B X 22X 2 —2X2X 2+
631252
+axaxs X1

L s ds 3x9 3 %9
&sp—ES ISMPW=—W (1+TX3) —_—— (41-8)—

2
6x9
2x2

-1
]

(2x434-2X 8248 2)+

(231228425 262 1 12X 24 X 2)+

=1324.7

{12 4-24) = —T716.62
Condition (11,12) requires that §z=26. Indeed

1324.7=3804.T4+ 17+ 72+ 7.5+ 135+ 58,5+ 2 (58 - 144+ 424
+ 184618454 or 1324.7=1324.7
Condition (13.12) requires that Agp=2ZA. Indeed

— 716,62 = —261 —199.12 —67.5 — 81 —8]1 —27 = —T716.62

Both of these condilions being satistied, we may be sure thut no error has
been committed in caleulating the unit displacements. Substituting the values
of these displacements in the two groups of simultaneovs equations, we obtain

354,7X + 58X 5+ 144X, + 42X g = + 261
58Xy + 17X+ 18X, 48X g+ =67.5
144X, +18X 312X ;4 18X g4 =81.0
42X, +8X 3+ 18X+ 7.5X = +27.0

185X - 54X g = +- 199,12
54X 5+t 58.5X 5= 4810
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The solution of theso equations (omitted here) leads to the following
values of the redundant reactions

Xy = 40.607 ton X, —= —0.602 ton
Xg =+ 1.400 tony Xy=-0.037 ton
Xy=+4-2.753 ton-metres Xg= —0.340 ton-metre
Applying all the forces Lo the simple statically determinate structure and
calenlating the bending moments induced both by the reactions just obtained
and the actual loads we find
Meg=+1.460 X 34-2.703 —9 = —1.87 ton-metres
Mgg= —1.460 % 3L 2.753= —1.63 ton-metres
Mgy = +0.087 x 3—0.340 = —0.23 ton-metre
M yz= —0.037 X 3—10,340= —0.45 ton-metre
Mgg == —0.607 X 441,460 x 34-2.753 —0 = 4-0.56 Lon-metre
M= 10007 X 4—1.460 % 3--2.753 = 10,80 ton-melre

Xy 146

Fig. 38.12;

My = +0.607 X 441.4060 ¢ 3-4-2.7534-0.037 % 3 —0.340 —
— 9= 4 0,33 ton-metre
Mug= 10607 x £ —1.460 X 3+ 2.753 —0.037 X 3 —0.340 = +0.36 ton-metre
Myz=+0.607 x 104-1.460 x 342,753 —0.692 x 6 -
4-0.037 x 3—0.340—9 = —0.18 ton-metre
Myy= —4-0.607 x 10—1.460 x 34+ 2.753 —0.692 x 6 —
—0.037 X 3—10.340 = —0.18 ton-metre

The same bending moments could he obtained as follows: first multiply
the unit bending moment graphs of Fig. 30.12 by the corresponding values
36—853
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of the unknowns. Thus, all the ordinates to the diagram induced by X, =1
(see Fig. 30.12a) should be multiplied by -+0.607, the ordinates to tho graph
induced by X, = 4 (Fig. 30.12b) by +1.460, and so forth, This will give the
hending moment diagrams shown in Fig. 33.12a, b, ¢, d, e and f*. This
being done, add up the ordinates to all of these diagrams together with those
to the diagram due to the actual loads (see Fig. 34.12}., The resulting ordinates
will represent the ordinates to the bending moment diagram cormsgonding
to the given redundant structure. It will be readily observed that the bending
moments al Lhe joints are the same as determined previously

Mpg=4.38-4-2.75—8= —1.87 ton-metres

Mgi=+0.11—0.34= —0.23 ton-metre

Magy= +2.4344.384-2.75—9= 4-0.56 ton-mnctre

Myy=+2.434+4.3842,754- 0,11 —0.34—9 = +0.33 ton-metre

Myg= +6.074+4.384-2.75—-4.1540.11 —0.34 —9= —0.18 ton-metre

and so forth. The resulling bending moment diagram for the frame under
consideration is given in Fig. 33.12g.

Problem 3. Required the complete analysis of u double-span symmetrical
frame loaded with one horizontal force (Fig. 34.'12:1&.

Solution. The frame under consideration is redundant in the third degree.
The simple statically determinate structure adopted is represented in Fig. 54,128,
The hending momont diagrams induced by unit reactions will be constructed
for the following groups of unknowns:

X, consisting of two horizontal antisymmetrical forces,

X, consisting of one vertical roaction at the central support,

X3 consisting of two symmetrical horizontal forces.

The corresponding unit bending moment diagrams are shown in Fig. 35.12,
Let us resolve the force acting on the frame also in two groups ol components,
one symmetrical and the other antisymmetrical as indicated in Fig. 36.12¢
and &. The bending moment diagrams due 1o these components are also given
in the same figure.

structure
3
ol T

fal
Fig. 34. 12

The displacements A induced by the actual loads will he obtained multi-
plying the bonding moment graph due to antisymmetrical unit forees X
{Fig. 385.12q) by the graph of Fig. 36.12& due to the antisymmetrical component
of the actual load. The same operation will be repeated with the graphs due
to the symmetrical unknowns Xy = 1 and X; = 1 on one hand, and the graph
due to the symmetrical components of force P given in Fig. 36.12z, on the
other. It is obvious that bhoth secondary displacements &;» and &,; will reduco

*
* [t is not advisable to change the scales of the unit diagrams instead
of constructing new ones, this procedure constituting a source of frequent errors,
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fig. 36,12

30*
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to zero. Consequently, the three simultaneous equations become
Xibyr+Arp=0
Kobao+-Xalog+Aap=0
Xabyy+ Xgda+ Agp=0
Let us calculate ali the displacements assuming that EJ =1 lon sq m

- 10.4-.1x37.5><9 - 10.!.42xx33><9.5 i
7.5:;;(.;>< 5 m.s;}*ﬂx B s
w.zz-axsx%xs
=2 X o — 458
sam OMXTIXD 10.M2><x33x9.5 +2X7.a>;i.zx5=+mg_ﬁ
By3 =2 X %: 4-165.3
NP X x;;zs X95 | 10.5 xza)-i,f s o
Bep=2x DHXIXD _ 1502
Agp=2X M.;%?‘_&i.m 4 148.77

Substituting these values into the above system of equations we oblain
2253.1X = —2835.9
58X 54 105.3X 3= —52.2
165.8X 5--709.6X 5= — 148,77
The solution of these equations yields
X=—1.259) Xp=—090=—049 X3=0
The bending moments at different cross sections of the stroclure will be
Myp= 11280 X 7.5 = - 0.44 ton-metres

Miy=—+1.209x 105409 X5 —45—15.70= —2.53 ton-metres
Myg—= —1.250% 10,54 0.9 x 5—4.54+15.75= -} 2.53 ton-melres
Mgg== —1.259 X 7.5 = —9.44 ton-motres

Moy = —1.259 X 214315 = --5.06 ton-metres

The same bending moments could be obtained using the procedure adopted
in the previous problem, that is multiplying the ordinates to the unit graphs
by the magnitudes of the appropriate unknowns* and then summing up all
+

* This means that the ordinates to the M, diagram will be multiplied
by (—1.259) and those to the i, diagram by (—0.9).
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these ordinates together with tho ordinates to the diagram due to the aciual
loading.

The resulting hending moment diagram is given in Fig. 57.12,

Certain simplifications conld bo introduced in the above compulstions
on the following groands. When the given structure of Fig. 34.12q is acted
upon by two symmetrical horizontal forces as shown in Fig. 36.122 alone the
inclined members will work in direct comprossion, all other members remaining
idle. *

Tor this reason the bending moment diagram due to Lthe single load will
be exactly the same as the one produced by tho application of its antisymmetrical
components, [t follows thal the horizontal reacliens at the supports of tho Lwo

11
i
(|

T

Fig. 87.12

outside eolumns must be equal both in value and in divection, which means
that X3 = (. Previously we have arvived at the same conclusion at the outcome
of rather laborious calculations,

The symmetrical components of foree P will provoko no bending at joint 5.
However, we have found previonsly that the bending moments in the adjacent
cross sections of Lhe inelined members due to the antisymmetrical components
equal —4.5 ton-metres (Fig, 36.12q). These moments must be balanced hy the
moments induced by the redundant reactions, Of these only X, and X; can
give rise to bending in the inclined members immediately to the left and to the
right of joint 5. Consequently, the bending moments induced hy hoth ol these
reactions al the eross sections just mentioned must equal 4.5 ton-mmetres. And
singe X3 = 0 we may write that —5X, == - 4.5 wherefrom

—4.5
5
In the above equation the cocfficient (—5) to the unknown X, represents
the value of tho bending moment at the eross section under consideration due
Lo a unit ioad following the direction of X, (see Fig. 35.128). Thus, out of Lhree

= —0.0 ton

l’z ==

4

* This is easily proved by the introduction of imaginary hinges at joints
4 and 6 aud by the elimination ol the horizontal constraint at joint 2. The
application of the symmetrical components will produce no bending in any
member of the latter structure. Therefore, all the free terms of the canonical
equations become nil, which requires thut all the reactions of the redundant
constraints should be equally nil.
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unknowns two may be determined off hand leaving only one unknown X,. This
will requiro the cognﬁlutauon of two displacements 8,5 and A, and the solution
of one equation with one unknown. The abovo example shows that in certain
cases quite complicated problems can be solved very simply.

Problem 4. Required tho stress diagrams for both vortical and horizontal
members of & three-span highway bridge schematically ropresented in Fig. 38.12q
carrying on the first Lwo spans a uniformly distributed load of throe tons per
maotra.

Solution. The simple statically determinate structure 1o he adopted is indi-
cated in Fig. 38.12b. The bending moment diagrams due to unit reactions are

Jt/m

r
.".}rﬁ/m = LE5t/m

T (&)
Fig. 40.12

given in Fig- 39,12, The diagrams duoe to the symmetrical and antisymmetrical
components of the actual luags are represented in Fig. 40.12 *. An examination
of the above-mentioned bending moment diagrams leads immediately to the
conclusion that

+

* Tho replacement of the actual loading by its symmetrical and antisym-
metrical components will entail in the present case hardly any simplification
at all.

By3=045 =003 =05 =04, =045=0
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Cousequently, the five simultaneous equations will subdivide into two
independent systems, one containing two equations and Lhe other three.
The first system will contain only unknowns with symmelrical diagroms

Kbyt Xobra+ X ydy= —Ayp
XyBay -~ Xoboo 4~ Xy 0py = —Agp
X8y + Xobpa+ X 8= —A4y
and the sccond only the antisymmetrical ones
KXoyt~ Xsbas=—Azp
Xgbgs+ Xpbgs = —Asp

Let ug proceed with the calculation of all the displacements assuming
that £Jy=1 tou sq m

A% 9xB 16x0x9

Siu= 2 X e =+ 648
P—— 92xx91>.<51 ; 1sxd9><1 _—_
bum —BXIXE2__

o 9><11_J><-1 4 wxzm ——
Bgy— _1‘i_>5_§l><_12== —i8

o 12;()1(2;8 +16x-l42><12=+%0

o Bxdxd 8x1x2/3 i
by +2 X 2 _mi»=+13.35.1

8X1x8

Ly 1212 ¢ 8 B8x12x8 ;
Spp= 12X T By = 576
Mg (ih><108-—2fl3><16><£?h}ﬂ - 1,584
1
L 1 ( 1
Rygesslh {16 x 108 zfxlex 16y 1 =176
o 8108 3 23
oo 1218 %8 2% 2/ %1221 %G
Agpm —2x TRX0  BXIRXE -
{1t ><ill8—2-f? ® 16 x 906) 12 — 470
1
2 x 108 278 %1 7% 6 81108 x 8
aﬁpz_zxu);xsxa_l_zx i x123><2 X b —2% széx - 4,320
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Lutroducing these values in the equalions given above we ohtain
648X, 490X, — 432X, = — 1,584
DX | |- 16Xy — 48X, = —176
— 432X —4BX ;4 860X y = - 4,704
183.333X3— 16X, = — 144
— 16X 3} 576X 5 = 44,320
Dividing all the terms of the first equation by 18, of the second by 2,
of the Lhird by 48, of the fourth by 8/5 and of the fifth by 16, we find
30X+ 0Kp—24X, = —88
40X 48X p—24X,= —88
— 99X — X+ 20X, =408
5X3—6K5=—54%
— X3+ 36X5;=270
The solution of theso equations yields
Xy=42.145 tons
Xy = —06.435 ton-metres
Xy=—1.862 ton-metres
X;=-}5.543 tons
X5= —T7.448 tons
1n order to find the ordinates to the diagram of the resulling bending moments

acting along the members of the redundant structure we may now add the ordi-
nates to the unit graphs multiplied by the value of the corresponding nnknown

to those of the bending moment diagram due to the actual loading. This result-
ing bending moment diagram is represented in Fig. 4142,
As for the shearing forces, immediately to the right of the left almtment
we havo
Ixi2 6041
Go=—H———5 =12.99 tons
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[n the deck member to the left of joint £ wo find

__3x12 6041
04.3—‘———"2 = 23.01 tons
and to the right ol the samo joint

O&___3>;18+71‘12-1—é37.59 =26.10 tons

Continuing in the same way we shall obtain all the data necessary for the
eonstruction of the shear diapram representod in Fig. 42.12¢. This diagram

BT

fa) =
] o
o] I 5-1-r|-rr-n'ﬂ~rm-rm6~
e E,-,l JHA E-’? i E P
! = < B
] g H
Ay =403 HO ?—-: ik
0275
Iz Q graeh
ihs @ :"E
T TR T T
j -0
L4211
N grooh
Fig. 42.12

will permit the construction of tho diagram for normal stresses given in

Fig., 42.12b.
In order to find the position of tho maximum bending mc;mt:ntS let us deter-
PR

mine the points where shearing forces reduce to zero: X, = 50 = 4,33 me-

tresand X, = 2% = 8.70 metres (Fig. 42.12q).

The bending moments at these cross sections will amount to
‘for the span 3-£:

4332

5 =28.12 Lon-metres

M e =12.99 X 4.33—3.0 X

for the span 4-5

2
Mg = —T142 +26.10 X 8.70—3.0 X ,3-_;0_= 42,41 ton-metres

The reactions at tho supports are as follows
Ay= 449,11 tons; Ag= -+23.81 tons
Ag=--12.98 tons; Ag=—1.91 tons
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The values of reactions Az and 4g may be easily checked remembering
that

Ag=X,+ X5 = +5.54847,448 = 4+-12.99 Lons
Ag=X,—Xg= -+5.543 —7.448 = —1.91 tons

Problem 5. Required the bending moment diagramg for all the members
of the frame given in Fig. 43.12. This frame is redundant to the sixth degree
and the flexural rigidity of all its members is the same.

. Solution. Let ns adopt the simple statically determinate structure shown
in Fig, 44.12 and let us subdivide all the unknowns in two groups, tho first

”

P £
A, LS

N A1

T"s 1 X

1;2 l %

\J Xé‘ A }(5

A A A A

Fig. 43.12 Fig. 44.12

containing oniy the auntisymmetrical ones X,, X, and X,, and the second
containing all the symmetrical ones Xy, X and Xg. Since tho system of loads
acting on the frame is antisymmetrical itself only the antisymmetrical unknowns
will differ from zero {see Art. 3.12). It follows that the given problem can bg
snllved using one system of threo simultaneous equations with three unknowns
only

X8+ Xodip+ Xgdia+ Ayp=0

X8+ Xolao+ X825+ Ag, =0

X403y + Xob3z + Xabgz+ Aap =0

In order to obtain the values of all the free terms and the coefficients to the
unknowns we must construct the bending moment diagrams due both to the
antisymmetrical unknowns and to the actual loads applied to the conjugato
simple structure (Fig. 45.12). The multiplication of the graphs will be carried
out using Vereshchagin's method, all the bending moment diagrams heing
bounded by straight lines. We shall alzo assume that £J = 1 ton ¢q m. ITence

- 5;‘5 X 2§5+%(2x52_{_2x82+2x5x8)2+
16 x8x2 :
— =1
X 161,106
- 4’;5 x—i—xéx2-{-8x8x8=565.3
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Ba3=1 X EX1IX4+2X8X2=52

S 225 [zx4x3+5xay—¥xs=—ssz
a,3=1.5x~2—x2+1x5x5.5x2+¥_—.218
A5
dag= — X 1 X2—BXBX 2= —148

The displacements induced in the simple structure by the actual loads
will he obtained in a similar way
Ayp=2% 576 (2X 8% 1245 X 12) -8/6 (2 X 16 x 24—16 X 72) = —92

12x5 2 7224
Agy=——3 ’x-3—><ri><2-|-8x8><(2—)

=1,376

a3p712;‘5x1 K2—2XBX2%=—324

The shove values may be checked using the summary bending moment
dingram dus to the simultaneous application of all the unit reactions given

Fig, 45.12

in Fig, 46.12. Let us see whether condition (11.12) is fulfilled

8 =844+ Oup+ B33+ 2 (8124 013+ Oag)
6 =:1,196565.3 L 52 4 2 (~—~ 652+ 218 — 148) =649.3
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At the same time

=, ds 2545
6”:LSM§ =

(21124262 4-2 1 x6) |-

-+-26L5(2>< 6242 ¢ 534-2 X 6 X 5)+8/6 (2 x 108
+2xX62—2x6x10)==649.3= 38

Consequently, all the coefficionts to the unknowns are correet. Cheek
in the same wiy the displacements due to the applied loads using expres-

Fig., 46.12

sion (13.12)
A=Ayt Dgp+ Agp= — 921,376 —324 = 960
— d.
8op=12 § T, 5= 22 o5 124 6x12)+
L85 (22102442 X6 T2~ 10X 72—6 X 24) =060 =24

Having made sure that all the operationg earried out thus far ary correct,

we may introduce the values of the displacements into the sysitem of [our
simultancous eyguations

1496X | —B52X 5 L 218X ;=92
— 632X -+ 565.3 X, — 148 514,376
28Xy — 148X, 52X 3 =324
Upon simplification these equations become
598X — 326X 5L 109X, = 46
— 826X -+ 283X, — 14X, =688
109X — 14X 3+ 26X 5= 162

Their solution will he carried out in tabular form using the abbreviated
method as indicated hereunder.
Selving equation (1I1) we ohtain

41X ="01.4 X3=14.97 ton-metres
Therealter from equation (II}
106X 5 —15 X 14,97 = - 663: Xo= —4.287 tons
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Table 3.12
Bapstton x4 X2 s Multipliers a,), 3 K
(1) 5O3 —326 100 cqp = 0,546 281 46
Cyg= —-'0 182
o) 283 | —74 —117 | —688
(0 etz —177 59 208 25
(1) 166 | —13 Pag=0.141 91 | —663
3 26 61 162
(Iy-ctys —19.8 - —80.5 | —8.4
(11)- —2.1 | 12.7 | —o3
(111) 4.1 4.2 61.4

aud finally from equation (1)
SHBX 4326 X 4.237 4109 X 14.97 = 46; Xi= —4.961 tons

In order to make sure that the rools of the equations are correct let us
introduce Lthem into one of the simuitancous equations, say, the third onc*

—4.961 x 1094 4.237 X 74 14.97 3 26— 462 =0.009 ~ 0

It remains now to multiply the ordinates to each of the unit hending moment.
graphs by tlie magnitude of the corresponding redundant reaction as shown

e
4. 867

954

14.97
2480 A5 14,975
i
B =
g =
- E 5
77T Vozr st e .97

Fig, 47,12

in Fig. 47.12, and to add all of these ordinates together with those to the bend-
ing moment diagram dute to the applied loads (see Fig. 45.12). The ordinates
+

* It is moro advisable to substitute these roots into all of the simuitaneous

erualions.
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situated to the right and below the corresponding members will be reckoned
positive

M= —14.97

May= —14.97424.80 = 9.83

M= —14.97—16.95 + 36.89— 12.00 = —4.93
Mg, =29.9433.00 —79.88 - 24.00 = 8.46

M p=29.94+433.90 —72.00 = —8.16

The ordinates to tho resulling bending moment diagram will be plotted
on the side of the more extended fibres (Fig. 48.12).

)
473 wis

\_/

8. 46

Fig. 48.12 Fig 49.12

Upon cumpletion of this diagram it is necessary to check the aceuracy
thereol;

(1) Check the equilibrium of joint § (Fig. 48.12)
IMy= —4.23—4.234-8.46=0

(2) Check whether the algebraic sum of graph areas along a closed contlour
equals zero. ‘I'his is carried out bearing in mind that the rigidity of all elements
of contour 7-2-3-¢ romains constant and reckoning positive the parts of the
areas situated outside of tho contour

e : 23—9. A6—8.16
14.97 = 9.83’:X5+ 4.23 29 835 %54 8.46 981{)/1 X 8= 0.000 2 0

8.12. STATICALLY INDETERMINATE TRUSSES

By statically indeterminate trusses we mean such geometrically
stable hinge-connected framed structures for which neither tho
stresses, nor the reactions can be found without the knowledge of
the deflections sustained.

Each statically indeterminate Lruss (as well as any other redun-
dant structure) may be transformed into a simple statically deter-
minate one by the elimination of the redundant constraints pro-



576 Analysis of IHighly Redundant Siructures

vided such constraints are nol indispensablo from the viewpoint
ol the slabilily of thal structure,

The number of eliminated constraints will always represent the
degree of redundancy of the truss under consideration. Redundant
trusses may be statically indeterminale both internally and ex-
ternally just as the framed structures with rigid joints studied in
previous articles. In the lirs¢ case the constraints al the sapports

Fig. 50.12

are in such a number that their reactions may not be deduced [rom
statical considerations alone, while in the second case the redundant
congtraints are inherent to the truss itsell.

Tig. 50.12 represents a truss redundant in the first degree for
which only the reactions al the supports are statically indetermi-
nate. This truss may be considered as externally redundant if one

Fig. 5112

of the verlical supporling bars is regarded as forming the redundant
constraint. If on the contrary it were assumed that this redundant
conglraint is constituted by one of the lower chord members, the
truss will become internally redundant. Fig. 51.12 represents anoth-
ot slatically indeterminate truss which is externally statically
detorminate but internally redundant to the eighth degree.

As already stated in Art. 1.9, one of the most essential peculiar-
ities of redundant structures resides in that the strosses developed
in their members depend on the eross-sectional dimensions and
lenglhs of these members. When different materials are wsed, the
stress distribution becomes also a function of the moduli of elas-
ticily of these materials. In addition, redundant structures are
subjected to secondary stresses duc to erection defects, movement
of supports, temperalure sirains, ete., which makes them less de-
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sirable than statically determinate ones, as the latter are absolutely
unaffeeted by all the above mentioned factors.

On the other hand, statically indeterminate trusses are endowed
equally with certain advantages. Thus, continuous trusses provide
better volling conditions for trains passing over railway bridges for
their elastic line will present no peaks at the supperts such as exist
necessarily in the elastic lines of a series of statically determinate
trusses. Accordingly, trains passing over these supports will icel
no shocks or bumps. In addition, a continuous truss will always
require Tess material for its construction than a series of statically
determinate trusses covering the same span.

Continuous trusses are also simpler to build than the statically
determinate ones, for the elimination of redundant constraints re-
quires the introduclion of special hinges which are usually rather
complicated.

The stress analysis of redundant structures hecomes more and
more complicated with the inerease in the number of redundant
constraints.

In Art. 1.9 it was shown that the stresses or reactions developed
by the necessary constraints can always be determined on the basis
of equilibriom econsideration, while those of the redundant con-
slraints can be computed only if the deflections of the structure are
kuown. It follows that cross-sectional areas of the necessary members
of redundant trusses may be selected in exactly the same way as
for the statically determinate omes, the stresses in these members
being independent of their rigidity. As for the redundant members,
their cross scelions must be chosen in such a way that the unit stresses
developed therein should be as close as possible to the permissible
ones for that partieular material.

In order to arrive at this result the following procedure may be
reccommended: eliminate in the first instance all the redundant
embers of the truss converting it into a statically determinate
system which will be thereafter regarded as constituting the con-
jugate simple structure. The cross-sectional dimensions for all the
members of the latter structure will then be computed in the usual
way. IT the truss is subjected to moving loads, influence lines will
be  used.

The cross-sectional dimensiouns of the necessary members having
heen found, choose more or less arbitrarily the cross-sectional di-
mensions ol all the redundant members of the truss and then
recaleulate all the stresses using any of the methods peculiar to
redundant structures. [f the wunit stresses thus obtained differ
substantially from the allowable oncs, the cross-seclional areas
must be corrected accordingly and the structure should be recal-
enlated again.

AT—8638
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Approximate values of stresscs developed in members of stati-
cally indeterminate trusses may be obtained comparing these lrus-
ses with solid web beams covering the same number of spans and
supporting the same loads.

Thus, the conlinuous truss shown in Fig. 52.12 could be replaced
in the first instance by a solid web continuous beam resting on four
supports for which the bending moment and shear diagrams could
be easily obtained using one of the methods described in Chapter 10.
Thereafter the stresses developed in both chords could be obtained

Fig. 52.12

dividing the corresponding ordinates to the bending moment dia-
gram by the lever arm of the stress under consideration about the
appropriate joint. The stresses existing in the verticals and diago-
nals will be obtained in a similar way using the shear diagram.

A similar procedure can be used for estimating stresses developed
in redundant trussed arches.

The accuracy of stresses acting in members of redundant trusses
is controlied in the same way as in the case of redundant structures
with rigid joints such as portal and building frames, etc. One must
make sure that all the joints and portiensof the truss are in equilibrivm
and that the deflections of the system are consistent with the sti-
pulations of the problem. Thus, for instance, all the deflections at
the supports must be found nil.

Problem. Determine the stresses in all the members of a one time stalically
indeterminate iruss represented in Fig. 53.12, The truss carries five concen-

P=10¢
E
< el
o =
P vl ] Rl
[} & A i LX@'
= g ] B Ao
h
7
4 24.0m

Fig. 53.12

trated loads of ten tons each. All the members of this trass are of the same cross
sectinn.
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Solution. 1f we assume that the verlical at midspan constitutes the redund ant
member, wemay adopt as conjugate simple structure the one shown in Fig 54,12,

I |
paRinN

{ # A & P 7
h—; 4 fil :a.—

I
Fig. 54.12

The unkuown X, will represent the stress developed in the oloresaid vertical.
In this case the canonical equation becomes
Agp
X611+ Asp=0 wherefrom Xi_—__o_”
1"

Both deflections 8,4 and A, will bo deteririned using two Maxwell-Cremona
diagrams, one of which will he constructed for the actnal loads and the other

]
b

g &7
{

b

k r\ \\ £ . .
i 5 .

i /g y / ‘i \J &

P i

Fig. 55.12 Flg. 56.72

f
&
d

for the unit load X, = 1 (Figs. 55.12 and 56.12, respectively). The values
of these deflections are given by

NN,

Y
YL e =

EF
where § represents the length of each member.
All the computations will be carried out in tabular form as indicated here-
under (see Tuble 4.12). Summing up all the entries of columns 5 and 6, we obtain
EFSy =2404.12; EFA p= —15696.0
It follows that

15696.0 ; i
Xj=-| 0L 6.53 wrns

Stresses in all the other members can be 'determined casily using the
exXpression
1

y Ni“_—xiﬁl
37
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Table 1.72
. Bar S}\r!'eﬂ Spnren = = Tix Total stresses
Par No. Iesl:g:ﬁ, ;.og's I:r(\nlfs AL S A'J] It) * r.lénIS' .\':.’\'J";t:-;.\.l,

I-u 5207 1] —3.9 54.2 0 —25.4 —20.4
Ih 4.47 1] —3.45 o1 0 —21.9 —21.4
£ 41455 1) —3.05 37.7 0 -—18.9 —19.4
1-d 4,055 0 —3.09 7.7 0 —19.9 —14.0
I-e 4.47 0 —3.35 501 0 |-21.9| —21.y
I-f 5.207 0 —3.9 94.2 1] —25.4 —23.4
a-g 4.0 —33.38 6.33 160.3 —844 1.3 .0
b-i 4,00 —53.5 8.33 278.0 | —1 782 54,4 4
-k 4.00 — (0.0 9.00 | 324.0 | —2160 58.8 -1.2
d-1 4.00 — 0.0 Q.00 324.0 | ~2100 58.8 —1.2
e-n 4,00 —5H3.5 8.83 278.0 |—2732 54.4 (USR]
I-p 4,00 —33.3 6.33 160.3 —B844 41.3 8.0
h-11 4,00 33.3 —3.33 4.4 —444 —21.7 11.6
17 400 53.5 —b.33 114.0 | —1140 | —34.8 18.7
m-I 400 53.5 —5.33 114.0 | —1440 | —34.8 18.7
o-11 4.00 33.3 —3.38 4.4 —444 —21.7 11.6
g-1i 5.00 41.5 —4-15 56.0 —861 —27.1 14.4
i-h 5.0 20.0 —2.5 M.2 —312,5|—16.3 8.7
k-7 5.00 8.5 —0.83 3.5 —34.5| —5.4 2.4
lI-m 5.00 8.3 —3.83 3.5 —84.0| —d.4 2.0
n-u 5.00 25,0 | —2.5 3.2 —312.5|—16.3 8.7
p-Ii 5.00 41.5 —4.15 a6.0 —861 =271 11.4
g-h 3.00 —-25.0 2.5 18.8 —187.5 16.3 —5.7
14 a.00 —15.0 1.5 6.7 —67.5 9.8 —5.2
k-t a3.0u —10 4.0 3.0 —an. 0 6.5 —35.5
m-n 3.0 —145.0 1.5 6.7 —67.5 0.8 —5.2
o-p 3.00 =25.0 2.5 18.8 —187.5 16.3 —8.7
a-b .83 0 1.0 3.33 0 6.5 .5
b-c 5,43 0 1.0 5.393 0 6.3 6.5
c-d G.00 0 1.0 6.00 G 6.5 6.5
d-¢ 5.33 V] 1.0 5.33 0 6,5 §.0
e-f 3.38 Q 1.0 3.33 0 6.5 (]
>3 — el —_ 240412 |—15 696 —_ —
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The values of .¥; oblained in this way should be entered into colunn 7 of Tah-
Ie 4.42. Adding the magnitude of these stresses to those induced in the simple
structure by the actual loads (the values of these stresses are given in column 3)
we shall oblain the lotal stresses developed in all the members of the redundant
truss. These stressez are represented in eolumn 8,

In the case ol stresses due to temperslure changes the canonical equation
for a one iime statically indeterminate strncture will hecome

X+ Apg=0 where Ay=aIN S

where o = coefficient of thermal cxpausion
t == temmpeorature change in degrees.

Let us stedy also the stresses induced in all tho members of the samo truss
by an crection defect. Assume that the vertical mnr has been made ¢ units longer
(or shorter) than required, which is cquivalent to a thermal expansion or con-
traction ol this vertical equalling @ = « £S, while the values of thermal expan-
sion or contraction for ail othor truss members remain nil. Tn this ease the above
equation becomes

Xydyy+Ap=10
Algmai;i!.q;;’\?.ﬂ

where ¥y is the stress induced in the same vertical mn by a unit force X,
Siress analysis for trusses of a higher degree of redundancy can be carried
out in exactly the same way. Resort can be made to the grouping of unknowns
and Lo the replacement of the applied loads by equivalent symmetrical and
antisymmetrical systems as described in the preceding article.

An example of influence line construction for a one time statically
indelerminate truss has been given in Art, 9.9,

9.92. COMPUTATION OF STATICALLY INDETERMINATE
STRUCTURES WITH THE AID OF SIMPLER
STRUCTURES REDUNDANT TO A LOWER DEGRELR

Simultancous solution of several equations with several unknowns
may be avoided il the conjugate structure used is one degree lower
in redundancy than the one analyzed.

I'lie stress computation of a structure redundant in the nth degree
will reduce Lo Lhe solulion of a single equation with one unknown if
the conjugale simple structure itself possesses (n — 1} redundant
e ustraints. This sivgle equation

Xl(su—!"—i\lp =0
will show that the displacement of the (= — 1) times statically
indeterminate conjugate structure along the direction of the ad-
dilional constraint whose reaction equals X is nil.

In the above expression 8y and Ay, represent the deflections of
the (n — 1) times statically indeterminate structure along the di-
rection of this constraint caused by the unit reaction X, and by
the applied loads, respectively.
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Were we to adopt as simple conjugate structure the one ohtained
through the climination of two redundant constraints, the simul-
tancous cquations will become

X044 Xobya +Agp=0
X day + Xzﬁzz—f-ézp =0

where 8y, 842, 85y, 32, A1, and Ay, are the doflections of the (n — 2)
times statlically indeterminate conjugate structure due to the unit
forces X; and X, and to the applied loads. The displacements 8
and A of this conjugate structure will be easily obtained if the dia-
grams of stresses (those for the bending moments in the case of fra-
mes with rigid joints or those for normal stresses in hinge-connected
structures) induced in this structure by unit loads acting along the
directions of the unknowns and by the applied loads are readily
available. Such diagrams (or formulas permitting their construc-
tion) can be found very frequently in special enginecring handbooks,
in which case the amount of computation work may be reduced very
considerably. Tlowever, if the stress diagrams perlaining tc the
steucture adopted as a conjugate one are nonavailable, the procedure
described becomes useless.

Problem. Construct the bending moment diagrem for a framed structure
redundant in the fourth degree given in Fig. 57.12 using the stress diagrams=

p
e 1 ¢ a
B l {
 HT =
;"? b
i T
Pig, 57.12

available for the knee frame of Fig. 58.12. All the members of the frame have
the same rigidity throughout.

Solution. Adopt the threo times statically indeterminate system shown
in Fig. 59.12 as a conjugatc simple structure. This system is derived from the
given one by elimination of the righti-hand support. The equation expressing
that point d remains in place becomes

X8y +44p=0

The displacement 6y will be obtained constructing the bending moment
diagram induced in the conjugate structure by the unit load X,. The cantilever
«d of this structure is statically determinate and the diagram of hending moments
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produced therein by the load X is triangular in shape with a maximum ordi-
nate equal to [ at joint c. It follows that the said joint will be acted upun

0 N (i ]
o@ f‘q o
lnT‘h ]\n\ .1 A{ 'rl"l“‘” e 3
N il T1L7¢ | {
1 | : -
A JZ
(a) 17737 ()

Fig, 58.12

by a couple ™ = ! and the bending moment diagram relative to portion ach
of the structure may therolore be obtained multiplying all the ordinates to the

bR T
. e e ~]
(s P “|mmg|1
| —1c
“ : ' = 1
l -{._a. =1
4 z
L
b
[
e
Fig. 59.12 Fig. 60.12
diagrams shown in Fig. 58.126 by I. Such a diagram is given in Fi%._ 60.12.
jagram.

The amount of displacement 844 is equal to the second power of this
Using Vereshchagin's method we obtain
113

By =13 [(HAY+ (422 — YA X Y2+ (V2P + (AR — U2 X LA 1]y =gl

The same result could boe arrived at by the multiplication of the M,
graph (Fig. 60.12) by the graph of Fig. 61.12 due to tho application of a
ilimil- loud Xy to the statically determinate structure shown in the same
gure

1118

B2 L
By= g Xog L+ (2 —1) X 5 l=gi
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Displaceaenl Ay, will be found multiplying the

diagram of Fig. 5%.12q
by the diagram given in Fig, 60.12

4p1
a,pz[mz (—:z><5—P—I XUh—2x ot iy o

£ A
SRLLNTE %f-?xzm—zx%xz;swx%x
xi,’z—s—}gxh‘&l—%xiﬁ)—!—%[—EX%XI.—’E—JX

The same result eould be nchieved using the diagrams of Figs., 35.1%

i |
ﬂ 4
EECETC T X;rf
Fig. 671.12 Fig. 58,12
Pl
3l

a
= £
A
Fig. 63.12
and 61.12
R P A
’P“( 16 7322 BT THRET

or else those of Figs. 60.12 and 62.12 (see Art. 7.9)

2

A | 1 P
Bip =g~ X5 X5 (UB8X1B—U4 K 23) jr=

TUAEJ



10.42, Influence Line Models for Continuous Beams 585

The introduction of the values of 83 and Ay, into the equalion given
above yiclds

v S PR2UEI 3,

A= T T G4BT 1108 T 88

The resulting bending moment diagram for the given redundant strncture

will be ohtained as usually multiplying all the ordinates to the 3, diagram

e L {
2% | [ =
* | L A " Ll oL i %
— . =
o ) |- 77
i e
Al
v f M graph
/,I////f

Fig. 64 12

by the magnitude of the vnknown Xy just found equal to % P (Fig. 63.12)

and therealter adding these ordinates to those of the M, diagram of Fig. 38.12a.
The final diagram is shown in Fig. 64.12.

10.12. INFLUENCE LINE MODELS FOR CONTINUOUS BEAMS

If the influence line for a continuous beam redundant to the nth
degree were constructed using as conjugate structure another con-
tinuous beam (n—1) times statically indeterminate, the reaction of nth
constraint duc to the load unity P could be derived from the equation

Xidiy4-81,=0

whence
’ ﬁif'
Xim =
Replacing &, by 8,, we may write
[

It will be remembered that 65, given in the above equation rep-
resents the ordinate to the deflection line for a (2 — 1) times sta-
tically indeterminate continuous beam due to the application of
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a load unity acting along the direction of X, while §,; may be re-
garded as the scale factor permilting the conversion of the deflection
line to the influence line. This method of influence line construction
we have named the kinematic methed. It furnishes an easy means

Pt
(@ \;g R J’ 4 5
(6) HTHT}P;\ .S‘ﬁape of influence ling for X

- M [ L

Shape of influence line for Xy

—
-

N N X5t R 3

Fig. 65. 12

of determining the shape of the influence lines for continuous beams,
this shape being exactly the same as that of the deflection line 6y,
which can be obtained at very little cost.

Fig. 65.12 shows the shape of the influence lines for support reac-
tions, for bending moments and shearing stresses pertaining to a
continuous beam resting on five supports. The shape of these
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influence lines has been determined practically without any com-
putations using the dellection lines due to unit forces applicd along
the eliminated redundant reactions. Thus, the influence line for the
left-end support reaction will be exactly of the same shape as the
deflection line of the continuous beam redundant in the second degree
{Fig. 65.12b) acted upon by a load unity X,.

This kinematic method provides very rapidly the shape of the
infiuence lines which may be used as models when determining
those portions of continuous beams which should be loaded in order
to obtain the extreme values of the stresses under consideration.



13 SLOPE AND DEFLECTIONS.
2 COMBINED AND MIXED METHODS

1.13. CHOICE OF UNKNOWNS

In the method of forces previously described the unknowns rep-
resented the reactions (forces or moments) doveloped by the redun-
dant constraints. When these unknowns were determined all the
siresses at any cross section of any member of the structure could
be easily calculated whereafter the dellections and angular rota-
tions could be obtained in the usual way. Thus, in the above method
we started with the computalion of stresses and reactions proceeding
thereafler to the determinalion of the rolations and defleciions.

The same problem could be tackled in the inverse order, that is
first determining by any method available the displacements and pro-
ceeding thereafter with the computation of the corresponding stresses.
This sequence of operations is adopted in the method of stress ana-
lysis usually called the slope and deflections method which we are
going to study in this chapter.

The unknowns of this method will represent the angles of twist
and deflections induced by beuding moments, while the strains
and displacements due to normal and shearing forces will be neglecl-
ed. No additional error will be introduced thereby in the compu-
tation of rigid joint systems for in the method of forces we had eqgual-
Iy neglected the influence of direct and shearing stresses. It will
be also assumed that the difference in length between the original
member and the chord of its elastic line is practically nonexistent
which means that the distance over which the ends of a deflected
member are drawn together is completely neglecled.

We shall begin our study by establishing those of the displace-
ments of a member which must be known in order Lo find the stresses
acling at one of its cross sections. For this purpose let us study
a rectilinear bar AB (Fig. 1.132) isolated from any redundant strue-
ture. The stresses exisiing in this structure including bar AB itself
will cause this bar to deflect and to Lake up a new position A’B’
as shown in Fig. 1.13¢. The movement of Lhe bar AB to its new
posilion may be regarded as consisting of the [ollowing independent
displacements:
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1. A translation of all the points of Lhe bar over the same distance
A, (Fig. 1.13b). During this translation the bar remains straight
and parallel to itself. The bending moments and the shears at all
the cross sections of the bar remain nil.

2. The deflecLion of one of the fixed ends of the bar along a direc-
tion normal to its axis (say, of the end B) over a distance A ,,.
The elastic line ol the bar and the corresponding bending moment
curve are represented in Fig. 1.13c.

Fig. 1. 18

3. A rotation of the end A of the bar through an angle ¢,. The
elastic line and the corresponding bending moment curve are given
in Fig. 1.134.

4, A rotation of the end B of the bar through an angle g
(Fig. 1.13¢).

5. The deftection of the axis of the fixed end bar under the in-
fluence of the loads applied between points A and B (Fig. 1.13f).

The elastic line of the bar AB resulting from a translation A,
from a deflection of the end B about the end A over a distance A 5,4,
from the rotation of the end sections through angles ¢4 and ¢ 5 and
from the deflection due to the loads directly applied, will coincide
exactly with the elastic line A'B” (Fig. 1.13a). Thus, il we arrive
by any means Lo delermine the magnitudes of Ay, 74 and ¢y
we can thereafter easily find the values of M and Q acting at any
cross section of that particular bar, for the translation A, is not
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connected with any stresses in the bar under cousideration. Con-
sequently, for each independent member of the siructure we may
adopt as unknowns the deflection A, and the angular rotations
or angles of twisl ¢, and @ 5.

In framed structures with rigid joints (portal frames, building
frames, ete.) the deflections and angles of twist at the end faces of
all the members meeting at the same joint will always be exactly
the same, Consequently, when the method under consideration is
applied to framed structures with rigid joints the unknowns will always
represent the deflections and angles of twist of various joints.

2.13. DETERMINATION OF THE NUMBER OF UNKNOWNS

In the analysis of a redundant structure by the slope and deflec-
tions methad one must determine in the very first place the number
of unknowns.

[n the preceding article it was shown Lhat the unknowns will
represent the angles of twist and the deflections of the joints of
this structure, 1t follows that the total number z of unknowns will
be equal to the number of unknown deflections ny; and angles of
Lwisl n,

n="ng-+n

The number of unknown angles of twist is always equal o the number
of the rigid joints of the structure and therefore the determination
of n, reduces to a simple counting up of these joints.*

A joint is deemed rigid if at least two members meeting at this
joint are rigidly connected to one another. Bxamples of such joints
are afforded by joints 7, 2, & and 4 of Fig. 4.13a, by joints Z and 2
of Fig. 4.13f, and by joint 7 of Fig. 4.13g. Tf a joint is constituted
by the meeting of several groups of members where all the members
of one group are rigidly connected together but all the separate
groups are hinge-connected between themselves, such a joint will
be regarded as equivalent to several joints the number of which
is equal to the number of groups.

Thus, for instance, joint 7 of Fig. 4.13h will be reckoned cqual
to two rigid joints, while joint 7 of Fig. 4.13i equal Lo three rigid
joinls.,

Let us delermine now the number of independent joint deflections.
[n Arl. 1,13 we have mentioned that the deformations of rigid
structures caused by direct and shearing stresses may be neglecled

+

*Those of the joinls whose angles of twist are known beforehand such as,

for instance, the fixed end joints, if they are held absolutely fust, should not
be included.
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and that the dilference in length between a straight bar and the
chord connecting the ends of its elastic line may be regarded as
nonexistent. Bearing this in mind, let us replace in imagination all
the rigid joints of the given redundant structure with hinges. The
different joints of the latter system will not be able to move
independently for the displacement of one of them may entail the
displacement of a certain number of other joints. What we must
find is the number of deflections which may occur independently.
It is known that the number of such deflections in a hinge-con-
necled structure is always equal Lo the nnmber of additional bars
which should be introduced to make the structure geometrically

Fig, 2. 13

stable. Tt follows that the number of independent joint deflections
is equal to the degree of instability of the systern obtained by the intro-
duction of hinges at all the rigid joints and supports of the origingl
structure.

As an example, let us examine the portal frame shown in Fig. 2.13a.
This frame contains Lwo rigid joints B and ¢ and consequently
1y — 2. The number of independent joint deflections n; will be ob-
tained replacing all rigid joints and fixed supports by hinges as
indicated in Fig. 2.1350. The system thus obtained is unstable but
it will suffice to introduce a single additional bar to ensure its ri-
gidily. Lel it be an additional horizontal supporting bar CE as
in Fig. 2.13¢ or a diagonal AC as in Fig. 2.13d. The dotted lines
of Fig. 2.13b show the possible displacements of the sides of a hinge-
connecled quardrangle. It is obvious that the joint B will move
over Lhe same distance as joint € and therefore these two deflections
cannot be regarded as independent. Thus, in the case under con-
sideration the number of independent joint deflections equals one
(ra _T 1). The total number of unknown Lwists and defleclions will
equa

?3=ln;+ﬂd_22+1=3

As another example, let us investigate the more complicate frame
of Kig. 3.13a where the number of rigid joints totals six (»; = 6).
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The hinge-connected counterpart of this frame would be variable
in the thivd degree for its conversion into a stable structure would

a 4 5 p
2
2 g 7
12
7
1
77 () 7 W by 7
Fig, 8, 18

require the introduction of at least three additional bars (Fig. 3.138).
When these are present, joint 7 is connected to the ground by means
of two concurrent bars rendering this connection stable. The same

(ay 7 2w
: {2}
J 4 %
¥
¥
e g 7} l
rﬁ b

{d)

" .
{e)
T (h., 1 g
'L 2‘[ | -% ;/ %.

odu

-

iy |

Fig, 4. 18

applies to joints 5 and 6 and since joints 2, 3 and 4 are also connect-
ed by at Jeast two concurrent bars to those just mentioned, all
the system will be stable, It follows that the number of independent
dellections ny will equal 3 and therefore the total number of un-
knowns for thig structure becomes

n=6+3=9
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In Table 1.13 we present the number of unknown deflections and
angles of twist for cach of the redundant structures of Fig. 4.13
togelther wilh their degree of redundancy.

Table 1,13
Number of nnknown
Dearee of displacements
Strneinre fj“;{]l:j;‘ 3
Aot | o | oo
0 4 4 2 H
i 4 4 3 7
¢ O b} 2 7
d 15 T 2 i
e ¢ 1 a 1
f 2 2 0 2
g 3 1 0 1
h 11 3 0 3
i 9 3 a 3

3.13. THE CONJUGATE SYSTEM OF REDUNDAANT BEAMS

The conjugate redundant system utilized in the meihod of slope
and deflections aklways consists of a number of single-span redundant
beams. Thesc separate beams are obtained by the introduction of
additivnal constraints inlo the given strueture. Let us compare the
simple stalically determinate structure uged in the method of
forces with the conjugate redundant system utilized in the slope
and deflections method.

A good example is afforded by the reclangular portal frame re-
dundant in Lhe second degree given in Fig. 5.13a. The simple struc-
ture of the method of forces could be derived from Lhe above pas-
sing a section through joint 2, which would be equivalent o the
climination of two constraints. The simple structure would thus
consist of a knee frame and a straight beam both fixed at their lower
ends (Fig. 5.13D) and both statically determinate. As for the
conjugate redundanl system. this would be obtained by the
introdnetion of Lwo additional constrainis into the given structure—
one opposing the rotation of joint 7 and the other prevenling the
iranslation of joints 7 and 2 (Fig. 6.13). The system thing oblained
will be redundant to the fourlth degree.

Thus:

(a) the conjugale simple structure utilized in the method of
forces is derived from the original one by the elimination of reduu-

35 #52
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dant constraints, whereas the vedundant system pectaining (o Lho
slope and deflections method—by the introduction of additional
constraints;

(b) the conjugate structure used in the method of forces is always
redundant lo a lower degree than the given structure whereas Lhe
conjngale system used in the slope and deflections method is always
of a higher degree of redundancy.

1t should be noted that the constrainis introduced in order to prevent
the rotation of rigid joints differ in certain respects from the sum of con-
straints providing fired or built-in ends. Indeed, the additional con-
slraints should prevent only the twist o rotation of the joint withont

Lonjugate system of redundant
beams

-

,‘q /q XZ
[EEEL RNV ;Hﬂ_i_i_zx,
[ X R g
3 1}(2
o

£

Fig, 518 Fig. 6.18

. fal

A=

interfering in any way with its linear translation. [ence, Lhe only
reactions these constraints are capable of developing consist of mo-
ments applied at the joints.

As for the constraints preventing the deflection of joints, these
ean be obtained in different ways. One could, lor iuslance, intro-
duce diagonals 0-2 or 1-3 of Fig. 7.13a and b, or a horizontal sup-
porting bar al joint 2 as in Fig. 7.13¢ or alternatively an inclined
brace at joinl f (Fig. 7.13d).

The constraint introduced in the shape of diagonal 7-2 (Fig. 7.13b}
will not impede the displacement of joint 3 which is held fast in
any way. This diagonal will prevent solely the defleclion of jeint 7
along the direction of the line passing through this joint aud joint 3.
From this view-point the constraint provided by an inclined brace
of Fig. 7.13d is equivalent to the above diagomal. It is always
preferable to introduce additional constraints opposing the deflection
of joints in the shape of supports connecting these joints to the ground.
The introduciion of additional bars connecting different joints
of the structure between themseclves should be avoided as much
as possible.

Tf the given structure consists of vertical and horizontal members
preference should be given Lo additional supports themselves either
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horizontal or vertical. The introduction of inclined bars is liable
to cause cerlain complications in subsequent computations.

In order to obtain the conjugate redundant system the additional
constraints introduced must prevent the rotation of all the rigid joints
as well as all the independent deflections of these joints.

Lel us examine the two-storied frame of Fig. 8.43¢. This frame
is redundant to the sixth degree and therefore the number of un-
knowns in the mcthod of forces would also equal six. In the method

(a)

I Ab i 17

P A AT

Fig. 7.18 Fig. 8.13

under consideration the number of unknown displacements will
also equal six and will consist of four angles of twist and of two
deflections. The conjugate system of redundant heams will be obtai-
ned by the introduction of four constraints precluding angular ro-
tations of four joints as well as of two additional horizontal supports
prevenling all the independent deflections (Fig. 8.135).

Let us investigate in detail all the elements forming the latter
syslem. As staled above, all of ita members constitute single-span
statically indcterminale beam. For this reason let us take up in
the first place the coastruction of bending moment diagrams for
a single-span beam of constant rigidity having one fixed and one
freely supported end (Fig. 9.13a). Using the well-known method
of forces, we may construct the diagrams for various types of
external actions. The reactions directed upwards and the moments
acting clockwise will be reckoned positive. The simple structure
corresponding to this beam will be formed by a simple cantilever
shown in Fig. 9.13b. The reaction of the roller support at B wiil

Ja+
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constitiute the single unknown X, of the eqnation
Xdy+Am=0 (1.13)

The value of coeflicient &, will be given by the sccond power

of the M, graph (Fig. 9.13c). The external forces will have no
effect on this coefficient which will amount to

. 13
‘Suim

Tie [eee lerm of the equalion will be caleulated for different types
of loading:

() The beam is wniformly (loaded over the whole of its length
(Fig. 10.13a). The value of Ay, will then be oblained mulliplying

i q

@ 4L ’“’ﬁI[D]II[E{[[EIE%;
A 8 2 {
’j"‘_‘_‘—%y___, (6 77

&
‘14

M o

Fig. 9.13 Fig. 10.£3

©

the M, graph (Fig. 10.430) by the M, diagram (Fig. 9.13c).
11 g, 3 gl

EJ b= —

g T IR

T
futroducing this value into expression (1.13) we find immediately
T
Xy=Rz==ql

wherefrom reaction al point A bhecomes

b
RAqu—Ifl,.:?ql

The fixed end moment at A will be obtained surnming up Lhe
moments induced at that section both by the applied loads and
by the force X,

Map=— QI qH '—'_ﬁ'%
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() The beam carries one concentrated load P acling at any
arbitrary point (Fig. 11.13). Displacement Ay, will be equal to the
product of the M, graph by the M, graph

Puzl? 2
;\”_|= —SET I (*3" ({-—'—L!)

Since ul4+vl=1 whenee p=1—un

Pu2]3
—BEr .

Introducing this value into equation (1.13) we obtain

Xi = RB= s {3—HJ

Ap= 3—u)

5
The reaclion al point .4 becomes
Ry=P—Ry="7(3—v7)
and the fixed end moment
Mip= —Pul%—'P—? (3—u)= -—-%Ivti—r;g)

{c) The fized end of the beam is deflected in the direction normal to
its azis over a length A (Fig. 12,13). This movement will induce no

F
r s A
a——aﬁ-—-—-—vl%ﬂ_ al 4 -

o ”Tm\ L a
et (Bt —:! "‘T? gf—

M graph B M
grapt 5% graph LT
Plo(l-v? Lt !
7

Fig. 11.13 Fig, 12,13

bending moments in the conjugale simple heam bul the displace-
ment along the direction of X will become

Aa=A
From equation (1.13)

SEJ
X‘l = _-“ﬁ_ A
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which permits the immediate determination of the reactions
developed by all the other constraints

IES
Rp=X,= —3 4
; 3RJ
Ri=—X,= “I—s-&
3EJ
Mpp=—=-A

() The fized end of the beam is rolated through un angle ¢
(Fig. 13.13). In that case the digplacement at the right extremity

'
B
L= .1
3
NN
h
"
-t
5

M Ay -,
Morach = M graph
JES JaAtE]
« [
Fig. 13,13 Fig. 14.13

of the conjugate simple beam along the direction of X, becomes

A’q, = —‘q;l

in which case expression (1.13) yields
3ET

oGk 2

leading to the following values of the reactions at the supports
and of the fixed end moment

3ET AEJ
R}_:=X1=:—[—2-f?; RA=—X1='—T;—‘P
3EJ
ﬂf.ﬂB:'T P

(e} A difference in temperature Ay = t; — ¢, is introduced bet-
ween the upper and lower fibres of the beam (Fig. 14.43). The de-
flection along the direction of X; of the simple structure becomes
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in that case

aAt aAl 12
At — S g

where % is the depth of the beam.
Solving equation (1.13) we find

e
wherelrom
= 2ot
b, - 30&;\;.@1

Let us study next a beam with both ends built in (Fig. 15.13a).
As a simple conjugate structure we shall adopt two cantilever beams

gt g

s L

(b 2 X’IC ig
=
l n :
f

~
—

(e}

1
|
@ I"'_-g

Fig. 15.13 Fig. 16.13

of Fig, 15.13b obtained by cutting the given beam at midspan.
The diagrams induced in the latter system by unit actions are rep-
resented in Tig. 15.13¢, d and f. It will be immediately observed
that the direct stress X, will remain nil as long as the loads remain



600 Slope and Deflections. Combined and Mized Melhods

vertical. The same will apply to the case when the fixed ends are
shifted vertically or sustain angular rotations. This becomes quite
clear if we take up the equalion

X 831+ Kodgs |- Xobys+ Agen =0

in which both coefficicuts to the unknowns 84 and 8, as well as
the Irec term A, must reduce to zero, for the hending moment M,
remains constantly nil itsell
The unknowns X, and X, will
bhe found from the equations
A,..|.6H+ ._\1m=0

4 2 } 2.3
ASNde =" F_S Xobso 4+ Agn=10 (@da)
:
1

The coeflicients to the unknowns
in these two equations are given by

LIEBRR & B

As for the free terms their values
will depend on loading conditions
some of which are considered below.

(a) Both built-in ends are shifted
a distance A normally to lhe axis
of the beam (Fig. 16.13). The dellce-
tions sustained by the conjugate
simple structure along the unknown
reactions become

Fig. 17.13 Apa=A; Aspa==0

Introducing these values into equation (2.13) and solviug the
lattee we obtain

' 12EJ -
Xyj=— ) A3 X,=0
whence
2E 12KJ
Rp=X,=—27 5  Ry=—X="FA
6ET 8EJ
II'IAB=_‘£TA; MBA= —TA

(b) The fized end at A is rotated through an angle ¢ (Fig. 17.13).
In this case the deflections of the simple statically determinate beam
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along the redundant reactions become
Aiq&s —'”2([‘; .'i\-zq;:@
Solving once again equations (2.13) we obtain

6RT . faks
X1=Jﬁ"?i Ay=——1¢

Consequently, the reactions at the support and the fixed e
moments become
: [J=2)
Ry= X1=—fr‘1-‘
OEJ
I?A — “—"Xj = _Ta_ ¢

, 4EJ ok
Maip="5"¢; Mpa="1¢

The above dala logether with some addilional values of support
reactions and fixed end moments corresponding Lo a number of olher
loading conditions are presented in Table 2.13. This table will he
of great help for the stress analysis of portal and building frames
by the slope and deflections method. The analysis of a beam with
both built-in ends subjected to other systems ol loading is deemed
UNNECEessary.

4.13. CANONICAL EQUATIONS PECULIAR TO THE SLOPE AND
DEFLECTIONS METHOD

First let us clarify the general principles permilting to form the
necessary equations from which the angles ol twist and the deflee-
tions of the rigid joints may be derived. For this purpose let us
compare Lhe given structure with the conjugate system of redundant
beams (IMig. 18.13). It is obvious that the sole difierence between
the two systems resides in the presence of additional constrainls
in the latter, these additional constrainls opposing the rotation
and the deflection of joints. The existence of these constraints leads
to the appearance of reaclive moments and forces which wiltk become
necessarily nil when cach of the fixed joints will be rotated through
an angle equal to the real angle of twist and when the deflections
of all the joints will become equal to those sustained by the same
joints of the original structure.

When this coadilion is satisfied, all the deformations and stresses
set up in the conjugatc system of redundant beams will become
exactly the same as the stresses and deformations of the given
structure.
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4.13. FEquations Peculiaqr {o the Slope and Deflections Method (H15)

The equations of the slope and deflections method negale the exis-
tence of reaclive moments and forces developed by the imaginary
constrainls of the conjugate systcm of redundant heams just as the equa-
tions of the method of forces express that the displacements of the con-
jugaie simple structure along the redundant reactions remain nil.

In the most general form these equations may be wrillen as
follows

Ry=0 Ry 0 Ry=0

where Ry, 1y, R, ole., are the reaclive moments and forees devel-
oped by the additional constraints of the conjugate system ol redun-
dant beams due both to the aclual loads and Lo the twisls and de-
llections sustained by the joints. The indices of these reactions musl

Z
7 Z ?A
/
2 Confugate syst
P 2 | Conjugate system
‘r’ Redundorit { ™ of redundont
Structure / beans
7
Fig. 18,13

always correspond tn the indiees of the unknowns. As for the number
of equationg, it will be equal to the number of addilional cons(raints
or, in other words, to the number of unknown rotations and deflec-
iions. !

It is worth mentioning that Lhe equations used in the slope and
deflections method are equations of equilibrium as compared Lo the
equalions of the method of forces which were kinematic equations
showing the cxistence of certain relations between the displace-
menls of various parts of the structure.

Let us examine in detail the first cquation of the slope and de-
flections method (R, = 0) with reference to the conjugale syslem
of redundant beams given in Fig. 18.13. The reactive moment 72,
may be replaced by Lhe algebraic sum

Ri =Ru>+Ru + le

In the above expression the second index alotted to the terms
of the right-hand part serves lo indicate lhe cause which has given
rise to thal particular reaction.
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Thus:

1%y, is the reactive moment developed by the additional constraint
under the action of loads P (Fig. 19.13¢a);
Ry, is the reactive moment of the same conslraint due to the

fa!

Fig. 19.13

rotation of joint 7 through an
angle Z,;

1, 13 the reaclive moment due
to the dellection of joints f and 2
over a length Z,.

The reactive moments
and R, due to the displace-
ments Z; and Z, may be repla-
ced by he following cxpressions

R“ =er11 and I{m:.zsl"m

where ry; is the reactive mo-
ment due to the rvolation of
Lthe fixed joint through an angle
equal to unily, i.c., to 1 radian
(I'ig. 19. 138), and 1y, is the
reactive momenlt duc to a unit
displacement of joints 7 and 2
(Fig. 19.13¢).

Substituting these values into
the original equation we obtain

Ziry+Zorin+Bip =0
The second equation (Ry=()

may be written in esactly the
same way

Ziray-|-Zorgs -+ Rap =1

Here ry is the reactive [orce
induced in Llhe imaginary sup-
pott by the rotation of joint 7
through an angle equal to unity
(Fig. 19.130), and ry, is tho
reactive force developed by the

same support when joints 7 and 2 are dellected over a distance
equal 1o a unit length (Fig. 19.13¢), while R,, is the reactive
force at the same support due to the applied Joads (Fig. 19.13a).

The first of these equations expresses that in reality no reactive
moment is developed at the imaginary comstraint opposing the
rotation of joint 7, and the second that the reactive force at the
imaginary support is equally nil. The two equations form together
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a system of simultancous standard equations of the slope and de-
flections metliod. Equations of the same type could be obtained for
any number of unknown displacements, the number of equations in
the system and the number of unknowns in each equation coinciding
exactly with the number of displacements mentioned.

Thus, for instance, in the case of four unknowns the system of
simultaneous equations of the slope and deflections method would
become

Ziry A Zoria+ Zarsas -+ 2+ Rip = 0
Zrog ‘- Zorag -Zgraz+Ziray -+ Rgp=10
Zirsy+ Zorss - Zaras + Ziras + Byp =0
Zyryt Zarys -2t iz Zirsa - Py =10

Hereunder the coefficients to the unknowns (unit reactions) ryy,
rgs, etc., situated along the main diagonals will be termed rmain
coefficients, while the coefficients to the unknowns rig, rag, Fia ra,
cte., will be termed secondary coefficients. The coefficients to Lhe
unknowns of the slope and deflections method when situated symme-
trically about the main diagonal are equal between themselves as
was the case with similar coefficients of the method of forces. Indeed,
these coefficients are related to one another by the principle of e~
ciprocal works rpy, = Iy (See Art. 6.13). It follows that the system
of simultaneous equations of the slope and deflections method may
be solved using the so-called abridged procedure described in Arl.
6.42. The main coefficients of the equations under consideralion
are always positive.

The equations of the slope and deflections method differ from those
pertaining to the method of forces by the fact that Lhe coefficients
to the unknowns §,,, and the free terms A,, represeating unit di-
splacements of the simple statically determinate structure are rep-
lIaced by the coofficients to the unknewns rn, and the free terms R,
representing the reactions of imaginary constraints, which trans-
form the given structure into the conjugate system of redundant
beams. In addition, the unknowns themselves represent in the latter
case Lhe slopes (angles of twist) and defllections of Lhe conjugale
system while in the former they represented reaclive forces.

(3.13)

5.43. STATICAL METHOD OF DETERMINING THE COEFFICIENTS:
TO THE UNKNOWNS AND THE FREL TERMS

The determination of the cocfficients to the unknowns and of
the free terms enlering the equations of the slope and deflections
method requires the knowledge of the bending moments induced
in all the members of the conjugate system of redundant beams both
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by the applied loads and by the unit twists and deflections direcled
aleng the unkunown reactions of the imaginary constraints. The
consleuction of the corresponding diagrams can be easily cacried
oul using data contained in Table 2.13. Assume, for instance, that
it is required to construct the bending moment diagrams for the
system of redundant beaws given in Fig. 18.135.

The M, diagram for the left-hand column will coincide with that
of a fixed end heam acted upon by a concentrated load (sec line 6
of Table 2.13). For the eross-beam this diagram will coincide with
that of a beam built in al its left end and [reely supported al the
right one (see line 2 of the same table). The fixed end moments become

My= =M= —Phoy e —12
hecanse
e

u—'—vmifz }qu]a-:—--«é—

The M, diagrams ave represented in Fig. 20.13a.

The 3, diagram due to the unit twist of joint 7 in a clockwise
direction will be oblained for the crossheam 7-2 using dala con-
tained in the 3cd line of Table 2.13 and for the column #-7 in the
Sth line of the same table. This diagram is represented in Fig. 20.136.
As for the bending moments 47, induced by a unit deflection of joint
2 lowards the right, these will be lound using lines 4 and 9 of the
same table. The said doflection will induce no bending in beam -2,
as it follows the direction of the beam axis. The 37, diagram ix given
in Fig. 20.13c.

[Taving completed the bending moment diagrams due both to the
applicd loads and to the unit displacements of the system of redun-
Jdant beams we may proceed with the determinalion of all the coel-
ficients to the unknowns and free terms of the simultaneons equations.
IFor this purpose subdivide the latter into two different groups:

(1) those expressing reactive moments developed by the imagi-
nary constraints preventing the votation ol the joints;

(2) those representing reactive [orces of the imaginary supports
introduced in order to prevenl the deflection of joints.

The coefficients o the unknowns and the free terms belonging to the
first group will be obtained isolating each of lhe joinis under considera-
tion and forming the correspanding equilibrium equations of the type

EM=0
The cocfficients and the free terms belonging to the second group
will be derived either from the equilibrium of the whole system isolated

from its supports or from the equilibrium of thal or another portion
of this system.
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These equations will have the general form
27 =0

The direction of axis 7' will be selected with a view of simplifying
as much as possible the subsequent computations.

i

Fig, 20,13

LThe following convenlion of signs will be adopled: the reactive
Jorces and bending moments will be reckoned positive when they follow
the durection of the angular rotations and of the deflections adopied for
the joint under consideration.

Problem. Determine the coefheients Lo the unknowns and the free terms
entermg the simultapeous equations of the slope and deflections method for
the portal [rame given in Fig. 18.13,

Seolution. Start by determining the reactive moments 5, rqy anid rys. The
voactive moment /i, developed by the imaginary constrainut opposing e rota~

G0—553
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tion of juint I and due to the applied loads will be obtained isolating tho
aforesaid joint and assuming that the system is subjected solely to the action

Rip
Z
1=y 9t
] ) 8
(a)
Ph
F
Lxtended fibres
(a) 2
)
{5 JET
1" l
‘\:_,4 (6) =
W) = o
A AN
(6) =y
(c) L\ e
e ki II 7z
ﬂ 1
\
|i |
et I J
% S
(e q="py C o
Fig. 21.18 Fig, £2.13.

of loads P (state 21 (Figs. 20,13« and 21.13q). The eqnilibrium™ol joiut 7 re-
guires Lhat

2 P
BMy = Ry =5 =0
wherelrom
12 Ph
fip=—5+3

The reactive moment ry; al the same joint due to its own unit rotation
Zy in a clockwise direetion will be dorived ferom the squilibriom equation of the
said joint eorresponding to the case under consideration (state I, Figs. 20134
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and 21.13%)
a5 A ‘J'
2114’1=r“—31;—']—%-=(l
wherefrom
3EJ 4EJ
Ll B

As for the reactive moment r;, developed by the same constraint when
joint 2 shifts towards the right over a distance Zs = 1, its value will be ob-
tai(i‘lcd Irom the eqnilibrium equation of joint 7 pertaining to state 1/ (Fips.20.13¢
and 21.13¢}

6rEJ
i

Next compute the reaclive forces Rop, va and ros developed by the imagi-
naty support opposing the deflection 01;15 juint 2. The reaction Rap, due to the
actual loads will be found passing section /-7 which isolates the u per part
of the structure (Figs. 20.13a and 22.13a). The projection of all the forces ap-
plied to this portion on the horizontal gives

>:X=p+ﬁ'2ﬁ-§-=o
wherefrom
P
Rop=—75

The negative value found for this 1eactive force indicates that it is opposile
in direction to the deflection of joint 2 which was assumed to move from left
to right.

The reactlve force 1oy corresponding to state 7 will he again obtained pas-
sing section /-7 as indicated in Fig. 22.136 and projecling all the forces on the
hovizontal whenee

i, OB Ly
XX = R rag=0
aud lherefore
GES

Pog= ———

5]

Tt will be observod that ryl = ri,. This relation existing between two secon-
dary reactions is similar in all respecls to the relation existing between two
secondary displacements of the methoed of forces (Omn = 85,,); proof of the
above will be given in Art. 6.13.

‘The reaclive lorce rp, will be obtained passing section 7-I as in Fig. 22.13¢
and assuming that the stresses in the system of redundant beams aye due solely
to the unit deflection of joini 2 (state J/). Projecting all the fuorces on the z-axis
wo oblain

127 3EJS A
M=~ tra=t

wherefrom

1287  3EJ ABEJ
Top = —re

hE VRS T 3
39+
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We have thus ohtained the values of all the cocfficionts to the
unknowns and of all the free terms entering the system of simulta-
neous equations. The method used for the determination of these
values will be called hereaiter the static method.

6.13. DETERMINATION OF THE COEFFICIENTS TO THE
UNKNOWNS AND OF THE FREE TERMS BY TIIE METIIOD
OF GRAPH MULTIPLICATION

Tn a large number of cases the reactive moments and forces dev-
eloped by the imaginary constraints will be casily obtained multip-
lying one by the other the corresponding bending mowmenl graphs.

i

Fig. 23.13

This method could be used advantageously for the analysis of the
structure shown in Fig. 23.13. Tue use of the static method would

Fig 21,13

lead Lo certain complications for in the case under consideration the
projections on the z-axis would contain both shearing lorces and nor-
mal slresses.

Let us consider two different unit states n and m of an arbitrary
conjugate system of redundant beams (Fig. 24.13). The work 4,,,
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performed by the external loads of state n along the displacements
of state . may be expressed in terms of the hending moments using
expression (12.8) given in Art. 4.8.

- = -?I?myn ds
App=Tmu-1 =2 S e

wherefrom
?'mn=E Q ﬂ'_fmﬂni% ('ﬁl;i)

The theorem of reciprocal works stating that the work produced
by the loads of state r along the displacements of state m is eqgnal
to the work accomplished by the loads of stale m along the dis-
placements of state », we may write

Aum :Amn
but
Aym=rpn-1 and Apg=rim-1
and therelore

Tnm = Tun (5.13)

This theorem called the theorem cof reciprocal reactions can he
formulated as follows: the reactive force due to a unit displacement of
constraint m along the direction n equals the reactive force induced by
the unit displacement of constraint n along the direction m.

Problem. Determine the coefficients to the unknowns ryp and rgp for the
portal frame of Fig. 20.13.

Solution. The multiplication of the J; graph by the if, graph leads to

» W Mods  h 6EJ  oBJ GEJ _ 4EJT
ro=2 {2 % — o 2 (5 x - < ) +

EJ 6t
CEJ  4BJ | 6EJ  2RJ 6I2J
- 5z e ke b el

whiﬁhdcoincides exactly with the value obtained in Art. 5.13 using the statical
method.

Tho main unil reaction ryy will bo chtained raising the 3, graph to the
second power

,.H=ES¥§"?=£_}[2 (36(}5})2X2_35§J’)3)]+

RIET 2 3BT _ 15KJ

i v L s T e |
It is seen that this value coincides again with the one obtained previously.

The reactions due Lo the applied loads may be obtained considering
two different states ol the conjugate system of redundant beams, the



614 Slope and Deflections. Combined and Mized Methods

first of these states corresponding to the application of the actual loads
and the other being some unit state, say, state n of Fig. 25.13.

o
!
i
t
1
\

I~
=1
"
—
£y
-
-

Zn=
[ ;lr
i
a
Fig. 25.1 Fig. 26.18

The work accomplished by the loads of state P along the dispiace-
ments of state n is given by
Apn =P61}n - Rnp‘ {
At the same time the work accomplished by the externalforces
of state n along the displacements of state P equals
A'n.p=0
The theorem of reciprocal works states Lhat

Apn=Anyp
and Lherefore
Rup=—Pdpn

In this expression &g, is the deflection of the load point in
state n along the direction of the load P. If P=1 the above
expression becomes

Tpp= —6pn ({)13)

The latter expression establishes the relation between the unit
reactions and the corresponding unit displacements.

The value of J,, will be obtained using the bending moment
diagram corresponding to a beam built in at its right-hand extrem-
ity and supporting one concentrated load P =1 acting along the
direction of the desired deflection (see Articles 6.8 and 8.8). This

diagram denoted hereafter by My is given in Fig. 25.13c.
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Multiplying this diagram by that for 3, we obtain

=, Mpds

61”&:2 S .n'fp—;,j.—

Introducing the value of 8y, thus found in the cxpression for
reaction I, , we find

e "T
Rop=—P3 \ I 2EE

which, after simplification and replacement of Pﬂ}, by M, leads
{0

EF

In the latlter expression My stands for the ordinates to the dia-
gram of the hending moments produced by the load £ in any simple
statically determinale structure obtained by the elimination of
redundant constraints either of the given slructure or of the conju-
gate system of redundant beams, provided the constraints whose
reactions are desired are included in those eliminated.

T'hrus, in order to find the reaction of the nth constraint due to Lhe
applied loads we should multiply the area of the bending” moment
chagram due to the same loads applied to a statically determinale
siructure (derived either from the given structure or from the con-
Jugale system of redundant beams, provided the nth constraint is
among those climinated) by the bending moment diagram M, due
Ao the unit displacement of the nth constraint in the system of redun-
daut beams. The sign of the product obtained as described above will
be thercafter changed to the opposite one.

Bup=—3 P, Hede (7.13)

Problem. Tequired the reactions Ry, and Ry, at the supports of the portal
frame analyzed in Art. 5.13.

Solutien. The conjugate simple structurs and the My graph related _t,o this
strieture are given in Fig. 26.13. Mulliplying this graph by that for M, (see
Fig. 20130 we obtain

o L Myds 2 _qiz_ 1
1(,,,:«—1.8.-1.’1. = e x X %

1 3EJ 1 PRk 1 28T gl Ph
XX g ra g R XgXgr=—3Ty
Similarly fyp will be obtained by the multiplication of the My by the 5y
graphs (see Fig, 20.13¢c)

P ds 1 Ph b 1 2 6REF P
=8\ Mifly =~ 5 5 3 T =

These results coincide exactly with those obtained in Art. 5.13 using the
static method.



616 Slope and Dejlections. Combined and Mixed Methods

7.13. CHECKING THE COEFFICIENTS TO THE UNKNOWNS
AND TIE FREE TERMS8 PERTAINING TO THE
SIMULTANEOUS EQUATIONS OF THE SLOPL AND
DEFLECTIONS METIIOD

Check on the coelficients to the unknowns entering the system
of equations used in the slope and deflections method is quite similac
to the one deseribed in Art. 5.12. One should begin with the construe-
tion of the bending momont diagram M, obtained by the algobraic
summation of all the ordinales to the unit graphs pertaining to the
conjugale system of redundant beams

i=n
E33ﬁ1+;ﬁz+...+ﬁn= 2 Ef

e
This graph when multiplied by each of the unit graphs will give
the values of the algebraic sums of the coefficients to the unknowns
belonging to each equation. Thus, the product of the M, graph by
the M, graph equals

L ¢ MM FTPR T P ATy 7
r“ﬁl S My f;d&':ES 3 (My+ Mot + Mp) ds -

TET EJ

E

) T\?% ds szﬁgdé‘ :‘i:flﬁ ds s
~z {Sr+2{ =g +.0t3 § At

i=n
W

=ry+reg-r oot rm= 2/ Tig
i=1

The sum of coefficients ry; = Zry; will be obtained in exaclly
the same way.

Counsequently, the sum of all the coeificients to the unknowus of
any equation (say, Eq. i) must equal r,, given by
ds

Via -—2 S Egﬂs L.Tf

(8.13)

Thus, if we wish to check the values of all the unit reactions (coel~
ficients to the wnknowns) entering the first of the equations ol the
slope and deflections method we must compare the sum of these
reactions with the value of ry,

i=n
21 Pyt ==Tys (9.13)
i=

Other unit reactions entering other equations will be checked
in exactly the same way. The above procedure permits to check
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separately the coclficients entering each of the equations. It is equally
possible to check simultaneously all the coefficients entering all the
equalions. Indeed if we raise Lo the second power the M, graph we
obtain

- § .lffids=}: i (W 4+-Mat ... LM )2 ds -
e .,

EJ ET
o @ M3ds M ds M3 ds
iy 3 ol e Ly i
(“‘S nr +—§ EJ ""H‘S E.I)+
; ﬁ.l_-ﬁ'-zds 5 gﬁ:-rn ds )_
=(ry--riet oo =Tan)H+2(re=- ... Froan+ .. )=2r

The reaclions contained in the first term in parentheses of the
ahove expressions are the principal ones gituated along the main
diagonal, while the second term in parentheses contains all the
secondary reactions situated below or above this main diagonal.

It is apparent that the square of the 3, graph equals the algebraic
sum of all the unit reactions {coefficienls to the unknowns) contai-
ned in all the simultaneous equations of the given system, i. ¢.

e (10.13)
where
rﬂxESﬁ?sz‘% (11.13)
The values of the free terms may be checked computing
R,=—3 { @ (12.13)

that is, multiplying the 3f; diagram by the M, diagram. It will
be remembered that M, is the bending moment induced by the
applied loads in the members of a simple statically determinate
structure corresponding to the redundant structure under consi-
deration. The product obtained as explained above must be egual
to the algebraic sum of all the free terms of the simultaneous equa-
tions

P 5 S (My + M,y };‘}+Mn.)i”£id3=

o v, ﬂ_{‘_;’l’j;_j ds Iﬁzﬂf{; ds '
- (ZS = +ES e

W P M Mpd
48 S—“m{’—*‘) e B Mg b B
that is

Ry =3R (13.13)
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8.13. CONSTRUCTION OF THE M, N, AND ¢ DIAGRAMS

Wheu the system of simultaneous equations derived from the
stope and deflections method is solved, in other words, when the
angles of twist and the dofleclions of all the joints of the given
redundant structure are known, one can proceed with the construc-
tion of all the stress diagrams pertaining to this structure.

The ordinates to the resulting bending moment graph A will
he abtained by the swnmation of the ordinates to the 37, diagram
willl those o the unit diagrams, all the latter being previously
multiplied by the magnitude of the unknowns just determined

M=Mp+MZ 4 MZot ... +MnZa (14.13)

The diagram thus obtained may be checked using one of Lhe pro-
cedures deseribed in Art 6.9. It is worth noting that the control
ol Lhe eqnilibrium of moments acting at each of the joints becomnes
particnlarly significant for in the construction of all the bending
monment diagrams used in expression (14.13) no reference was made
to the said equilibrium condition. If the bending moments at one ol
thie joints do not balance, this means that some error has been com-
mitled in computing the values of one or more unknowns.

The shear diagram Q is derived from the bending moment diagram
just as in the methoed of forces. The normal siresses may be computed
thereafter. Tho shear and normal stress diagrams will be checked as
deseribed in Art. 6.9, Here the cquilibrium of dilferent portions
of the structure under consideration becomes of particular importance.

943, COMPUTATION OF THERMAL STRAINS BY THE SLOPE
AND DEFLECTIONS METHOD

We have seen previously that a change in temperature entails
nsnally tho development of stresses in redundant structures. Only
in a few particular cases temperature changes have no effect on such
structures as, lor example, in the case of a rectangular frame repre-
sented in Fig. 27.13. This frame is externally statically determinate
and Lherefore it can expand or retract freely in case of a uniform
change in temperature of all its members, without any stresses ari-
sing in any of the latter.

Let us show that temperature effects can be always resolved into
symmeltrical and antisymmetrical components. Assume that bar
AR of Fig. 28.13a is of uniform cross section and that the tempera-
ture on its npper surface is raised by t; and on the lower one by #;
with #; »> £, The effect of this difference in temperature is equiva-
fent to the simultaneonsg change of temperature equal to 1/2 (3, — 1)
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on both surfaces (symmetrical components, Fig. 28.1356) combined
wilh changes of tempecrature equal to + %—(tl — £,) on the upper

surfaco and to— —;- (t, — 1;) on the lower surface (antisymmetrical
components, Fig. 28.13¢). It is clear Lhat the combination of these

Pesly A
b K T T
; 4
— e e [
; 5
D P - ; fiety
4
@ Liml;
fei 7

1

|

!
: i "

] % 7 =

A -—r T
%}w i s 2 s Tyt
Fig, 27 13 Fig, 28.13

changes will result in the specified temperature change on each of
the two faces

51+fz_|_ 1—32__,_tl

and
bl b—b .
2 R
Returning to expression (20.8)
i+ t—1y
ﬂng”:O!.-—'—.z—-Q;\,*-i-OL % Qﬁ
We nole that symmetrical actions will lcad to normal straius
only wilhout bending of the bar because the difference (¢,—15)
reduces in that case to zero
o tittany _ titie

heeause Qx = 17 (Fig. 29.13a).*

+
*1f the neutral axis of the bhar is not ﬂltuated at midheight of the cross
section, ‘+ =

neulral axis of the fibre whose temperature has been raised by 8.

should be replaced by ¢, + ywhnl’uy isthe distance to Lho
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On Lhe other hand, when the bar is acted upon by antisymwetrical
components only, it will bend without any change in Lhe length of
its neatral axis. The angular rotation between the twe end faces of
this bar will equal
h—1p

k
because Qi = I (Fig. 29.13b).*

Consequently, fixed end bars which constitute all the members of
a conjugate system of redundant beams will expand or contrack

fy—1iy
" I

Ap=o Qu=mn

s L 2 o - vy AT
Imogerery stute for getermiring dp,

fa? 2|| {
1 3 Pasl
£z —_——
4
Ny grazt Rq=11
—
Imaginory state for getermiong A e
ib) 4 L
et D””"”
he
j’ i . 3 S \;
- s \:‘r
Ma graph areri

Fig. 28.13

without bending when they are subjected to a symmetrical thermal
eficet and will bend without changing their length when the ther-
mal effect is antisymmetrical. The corresponding bhending moment
graphs may be found in Table 2.13 (lines 5 and 10).

Tho only difference between the analysis of redundant strnctures
carrying direct loads and those subjected to a temperature change
resides in the construction of the diagrams for the bending moments
M, induced in the members of the conjugate system of redundant

+

+This expression is independent of the position of Lhe neutral axis.
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heams and in the delermination of the free terms of the equations
{these being denoted in that case by Ry, Ry, elc., and representing
the reactions of the imaginavy constrainis due to Lhe teanperature

change).
Problem. NMeguired the complete stress snalysis of the nonsymmetrical

frameo shown in Fig. 30.432 subjected Lo a temperaturs change. All the elements
of this frame are ol constant cross section with a flexural rigidity equal to EJ.

tye f,; £ﬁ

L

o i .__=.’.;4£ @ p

© | |4 ;
f:]ts ' :i‘.ﬂ

r
T %

s i

Guver 3
slructure | Symmeatrcal PO 7L fat

i thermal grog.ent g

AP Spmmetri e
a #iermol grodugnt
; TET o eeed
i@l b ici

Fig. 30.13

Selution. The temperature increment ¢ wiil be resolved into two components—
one symmetrical and equal to a uniform heating of all the elements t' = 5-1--%-—5-3
and the other antisymmedrical £7. The nismber of unknowns for the conjnugute
system of redundant heams given in Fig. 31.13 will equal two.

sg-=======zr 1
/—\Z! ﬂ;;# _____ \ &
N E_22 <4 I l,_é_
e 7] ¥ Nl 2[
I
@ < ]\\
I
g _J-U'ﬂa -I'.!_:‘.
ez o= 41
3
b s
Fig 51.18 Fig. 3213

The simultanecus equaticns become
Ziryy +Zoryp + K1t + Ru=0
21?'21 +Zef21 J,- HL;‘ ‘l -R;f- =1
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The coeflicients to the unknowns will be caleulated in exactly the same
way as i the structure were subjected to a system of loads. Each of the free
terms will consist of two reactions 7’ and R”, the first corresponding to the
symmelrical component and the second to the antisymmetrical one. The reactive
moment R1¢ developed by the imaginary constraint at joint 7 and the reactive
force ft2: developed at the imaginary support will be determined using the
M3 diagram pertaining to the system of redundant heams and due to a uniform
change in temperature of all the frame members.

Let ns first caleulate the extension of all these elements due to a rajse in tem-
perature cqual te ' neglecting as usual the influence of the direct stresses.

£/ 9 .
%Am 2w =1
/
7] %
/|
/
e
P
1 EET

{e
i

Fig. 35.13

[t will be remembered that the antisymmetrical components " lead to
no change whatsoever in the length of the bars. The extension of members @-7,
2-3 and 7-2 will therefore he given by Ay = ai'hy; Ay = at'hy; Ay = at’l

A
respectively (at ¢ = 'tl—g’-—{3 :

The position of all the jeints of the conjugate system of beams alter a nni-
form'change in temperaturo is indicated in dotted lines in Fig. 32.13. It is casily
seen that the relative deflections of the joints will equal

Agp=Ag=at’l
Agg=As—By=ul’ (hg—hy); Agz=0

It is also elear that joint 7 of the conjugate system will sustain no angular
rotation, and therefore the hending moments induced by the displacements
of the joints may be ohtained multiplymg the bending momonts due to unit
deflections (seo lines 4 and 9 of Table 2.13) by the values of the deflections
indicated above. The corresponding diagram together with th? values of ils
pertinent ordinates is shown in Fig. 33.13. The reaction R (Fig. 34.13a)
will he obtained isolating joint I

6EJS 3EJ

XM y=Rit— m Mo——g B2r=0

wherelrym

K e N B
Rip=8EJ (??""ﬁ;—)
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As for the reaction R2g (Fig. 33.13), its value will be found passing scu-
tion Z-/ and projecting on the horizontul ail the forces ucting on that portion

Rt
JET 1Y Z ,-f?i%.-

)T T
1
oA 1257 .
GFS A f}}l J'r‘?
ThE 0 (6)

(al

Fig. 34.18

of the frame situated above the section (Fig. 34.130).
EX=1—%§£-A1°-§-R§,;=0
i
wlerelrom

L Aii
R}

Next lot us examine the effect produced by the antisymmetrieal components.
Knowing tho drop in temperature A; = f, — £ hetween the inner and onter

surfaces of each c¢loment as well as the depth of their eross section k we may
easily obtain the diagram fur Mz (Fig. 35.13) using lines 5 and 10 of Table 2.13.
The ordinates to this diagram will be set off as usual on tho side of the extended
fibres or, in cther words, on the low temperature side. The equilibrium of joint
7 (Fig. 36.13a) gives

SM = Rt - EJast_ 3BEJadt _

R
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whienes

EJaAt
Ry = T
Pussing section 7-f aud prujreting once agaiu all the forces ncting on U
apper portion of Lhe frame on the horizontal (Fig. 36.13b) we il
3EJaAt . BEJaAt
7 e 7=
When #1l the coeflicients to the unknowns and all the free terms are deter-

mined, we may proceed with the solution of the simultaneons equations which
will yrefd tie values of the unkoown angles of twist and deflections of the joints.

IX=Rij—

Rii
JERAL T 2 Ry
H 2h 3
= I
! Flredt
L
Ll ki
h
{a) (6}

Fig. 86.13

The resulling bending moments acting at different eross sections of !-he.
given redundant structure may therealtor be calculated unsing the cxpression

M =M+ My M2+ Moyt . ..

The bending moment diagram heing known, we may proceed 25 usual with
the construction of the shear diagram and finally with that for the normal
stresses.

1043, ANALYSIS OF SYMMETRICAL STRUCTURES

The analysis of symmetrical structures may be facilitaled il the
unknowns are grouped together in a manner similar Lo the oue nsed
in the method of forces. This procedure allows Lo obtain symmetrical
or antisymmetrical unit diagrams, which leads to a subdivision
of simultancous equations into two independent groups, one contai-
ning only the symmetrical unknowns and the other the antisymmetri-
cal ones. A substantial simplification of all the computalions may be
achieved thereby.

As an example take up the double-span frame of Fig. 37.13. The
angle of Lwist of joint @ may be regarded as consisting of the sum of
two unknown angles Z, and Z, and the angle of twist of joint & as
consisting of the difference of the same angles Z; and Z, (Fig. 38.13).

The horizontal displacement of the crossheam may be regarded
as antisymmelrical Tor yoint & (see Fig, 37.13) moves away from the
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axis of symmetry while joint 2 moves towards the same axis over the
same distance. In this case the system of three simultaneous equa-

EJ=Const

1

hsl

4

Fig. 87.13

tions with three unknowns
Ziry A Zarya -+ Zyria - Rig =0

Zyray + Zores -+ Zyran +RM ={
Zyrss+Zorgs 4 Zyras + Ryg =1

talls inlo_ two independent groups
Ziriy+Zsri3 4+ Ryg=0

Zyray+Zargy+ Ryg =0
and
Zgrag+ Ry =0
because
Fig=Ta =Ty =Ty=0
Z?,,_....‘ Z,r e —,
//f_-.... q v, _"Q
e 1 : ) d 5 -
-'[ |
Bl z

Fig. 38,138
The bending moment diagrams due Lo the groups of unit renctions
are represented in Fig, 39.13. The coefficients to the unknowns as
well as the free terms of the above equations will be obtained as

i0—833
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Fig. 39.18



10.13. Analysis of Symmelrical Struclures

627
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Fig. 40.13 represents a portal lrame loaded by one single concen-
irated force, the conjugaie system ol redundant heams as well as the
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bending moment diagrams induced in the latter by the symmetrical.
and antisymmetrical groups of unit reactions and by Lhe applied
loads. The reader is invited to check both the diagrams and the
reactions (coelficients to the unknowns and free terms of Lhe
simullaneous equations) given horeunder

20KJ 1287

= rig=rg=0 =
12T 2k _ :
r3=Tan=—=5" Tag = 5 reg=7rge ="

: 3 3
Ry~ —gPl  Rep=—3Pl Ry 0

11.13. AN EXAMPLE OF FRAME ANALYSIS BY THE SLOPE
AND DEFLECTIONS METHOD

Aszsume that it is required to construet the hending moment, the shearing
forces and nourmal slresses diagrams for the framed structure shown in Fig. 41,13,
The system of luads, the length of the membars and the ratios between their
moments of inertia are all indicated in the =ame figure.

P=8t

|

~

h=&dm

2tim

q

Fig, 4113

4. Compurison of the number of unknowns in the slope and deflections method
with that in the method of forces. The degree of redundancy of the given structure
being equal tu § = 2 X 3 — 1 = 5, the number of the unknowns in the method
of forces would ho equally five.

the number of unkrown angles of twist »; = 3 and the number of inde-
pendent unknown deflections equals one and therefore the fotal number
of unknowns in the stope and deflections mwethod will egual ng == my = 1 -
+ 3 = 4, Hence using tho latter method we shall rednce the number ol simul-
tancous equalions from 5 to 4.

2. Choice of the conjugate system. Let us introduce Lhree Imaginary con-
straints oppesing the rofation of the rigid joints of the frame and vne imaginary
support preventing the displacement of joint 7 as indicated in Fig. 42.13, Tho
three unknown angles of twist will be designated by Z,, Z, and Z; and the
unknown Ill!ﬂuc-timl[iw Z,. The conjugate system of redundant heams will consist
in that case of four heams fixed at hoth ends and of vne beam fixed at one en
only and simply supported at the other.
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3. Construction of bending moment dingrams for the conjugate system. The
coefficients to the unknowns and the free terms of the system of simultaneous
equations will be derived from the bending moment diagrams induced both
by the applied loads and by the unit reactions in all the members of the conjugate
structure. These diagrams are represented in Fig. 43,13, *

V™, \ P Wi

Fig 4213

4. Calculation of the coejficients to the unknowns and of the free terms. All
the necessary operations are carvied ovt in tabular form as indicated hereunder.
5. Checking the values obtained for accuracy. The accuracy of the coefficients
to the unknowns and of the free terms obtained as deseribed above will be checked
using the M, diagram (Fig. 44.18) oblained through the summalion of the
ordinates Lo the four auit diagrams shown in Fig. 43.13. Raising the area of the

Mg diagram to the sccond power [see expression (11.13)] we obtain

x @xa2x-2xm 0P (2, 308,
—;—2x%x%—2x%x%) z]zl‘fiz)ﬂzzzgilm

0]11 the other hand, the sum of all the cocfficients given in 'lable 3.13
cquals

Zr=ry-+rat ragtra T2 (Ppa ra P ray o o Ta) =

=BT (e+%’+%+(_2]) 2B (1 4 ;_1+:1T..z_%+ %_,.%) =

116ET 4
=T =12 g EJ

The compavison of the 1otal thus obtained with the result of graph

multiplication shows that they coincide and consequently condition (10.13) is
satisfied.

'S

* In this example the values of all loads and reactions are given in tons
and all the distances are measured in metres.
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Let us proceed with a check on the sccuracy of the [ree terms. For this
purpose we shall construct the My diagram whose ordinates represent the bend-

Fig. 44. 13

ing moments induced by the given loads in a simple statically determinate
structire obtained by elimination of all the redundant reactions. This dlagram

b (h-2) =253 (6- £ }=27tm
Fhf=Y2=9tm ﬁ’\

pegt

&
S
E "
> §1 =
S HER
5 =n o

Jarfrp-h= Bvgs=stm
Fig. 45.13

is given in Fig. 45.13. Multiplying it by the A, diagram [sce expression
(12.13)] we obtain

- ¢+ d5 1 1 3 4 SEJ
. A e D AL e Ll L
}‘SM"M” Y (3>< X3X4XSEJ]+6><2.GEJX

K(—2X9IX3I+2R2TKI—2TX 39X 3)+

I 1 = 5 1 5
--*E-%j- (—2)(?5{ 51—2)(-—6—-}(27—}-27)(?—[-5?)(??)=—1!=——R5p

wherefrem Ry, =14, }
On the other hand, the sum of all the free terms given in Table 3.13
equals
SR Ryp+ Rop+ Hap+ Rip=2.25 +040441.75 =14.00

The coincidence of the two results shows that condition (13.43) is salisfied
which means that the computations are correct,
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6. Solution of the simulfaneous equations. For the solution oi the simul-
taneous equations resort shall be made to the abridged method deseribed
in Art. 6.12. The equations negating the existence of reactions of the imaginary
constraints become in that case

Zirys+ Zorip+ Zaria+ Zyrys+ Hip=0
Zyray 4 Zorga-t Zaras+ Zurg+ Rop =0
Zyrgg+ Zarap+ Zaras+Zarau-t flgp =0
Zyrgy +Zarss+ Zataa+ L+ Hup=0

Substituting in these equations the numerical values of the coefficients
to the unknowns and of the free terms given in Table 3.13 we ubtain

Mttt st iR (5=F)
zl+-’§‘zg+—_i— Zy+ 5 24=0 (32:1*3(5]
‘;—32+%Za‘{-%3.i=9 (33“‘%})
lartnsioifaililP0  (si—3)

The values indicated in parentheses at the end of each eguation represent
the total § of ail the coofficients entering this particular equation.

The solution of the above cquations is given in Table 4.13.

Equation (IV) gives

i 175,740 X 208,280 ; 1
L=~ T3 50ET x 34,760 ~ 08-S X Ty
Introducing this value into equation (I11) we find
191 19 : 1ty 9
™% 1w ('“8‘253 XET ) = TBOET
wherefrom
1
Zy=-+8.T9X -+
Procceding in the same way we find from equation (I1)
10, 1 ; 1 1 . 1 3. 1
T2t X6 X Fr 41 (_es.haaxﬁ] =X
wherefrom
i 1
Zg=1.355 X-EJ_
and from equation (1)
: g T B SR
331+1X0.355X*£'TT? (——08,233X-E—) — —m—

wherelrom
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Table 4.13
Iquation z Z zZ z Dgﬁ]er;: 8 K
No. -1 & 3 -4
Zih
Uyz=
' ) { =—13 9
(N 3| @ - @is=0 13/3 -7
Ty =
=—1/9
{ (2) 1172 142 1/6 16/3 0
-+ 3
(1) agn —1/3 ) —4/3 —13/9 77
o) 35 a
: i — —3/20 3 3
] 1 Cid —_—
(11 103 12 1718 o 5 T
() 5/3 16 3 0
P S O RCTE g . 4 a'.J
(i SN e =D
130 20 ot 120 TROET
: 47
o " —
|’ (4) 2/9 8/9 TET
- 419197 1
" l () oy . —1/27 —13/27 eh 3
35 1
Il . i =l e i PR I
1 () ez 1RO 550 R0i7
36 24019 919
II1Y ey, | » s i
L )’is.; 2050 T20<191 | BOX 10157
(V) 34 760 24 760 175 140
206 280 206230 |~ 1528087
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The valucs of the unknowns axe easily checked introducing them into
all the simultancous eguations

1 ! 1
k2 AR e TR =3 NB. 145 e

e B B e ot
-|-1XO.Sanx,—I-,--ﬁ(—IJB.J&*}XW)-}-&%XE;}--_O

R o 1 1 1
{2) 151—1—?52—}'-2“234—? Ze=1 XO.TIS—E—f--f—

o A o £ 1 i b N
+—XO.3;TJ—-E-’|7-T—2—X6.7’.9XW+§-(—58.233X'E—)—D

@) ?Zz+—2—23+1721=ixﬂ.355)( !

5
; =3 Er taX

£ sl o, B8
XG.TI9><H—J+-G—(—118.25.~1><~H)_0

1 1 1 2 e 1
(4} ~§-Z1+-EE»ZZ+E23+-Q—Z‘+11.7HE—I“

i
3

= R, SR t
= x(-.dem-q- F XU.3uHX-E—,'J— 3 XG"HQ)\.—ET‘T

+5 (+88.258 % ) +11.78 x =0

Yy LS ET

All these equations being satisfied it may be concluded that no error has
Leen committed in the computations.

7. Construction of the bending moment diegram. The ordinates to tho result-
ing bending moment diagr;lm will he calculated using expression (14.13),
Fig. 46.13 represents the diagrams oblained through the multiplication of the
ordinates to each unit dingram (see Fig. 43.13) by the magnitude of tho cor-
vesponding reaction

M =Mz, My = MyZsy, My=MyZs and M, =M%,

Swmming up all these ordinates and adding thereto the ordinates to the
M, diugram (see Fig. 43.13) we obtain theso to the dosired resulting diagram
which is given in Fig. 47.13. All the ordinates to this diagram have been set
off on the side of the extended fibres.

A. Checking the bending moment diagram.

(n) Statical method

Let us isolte in succession all the rigid joints of the frame and let us see
whether téw equilibrivm conditions are satisfied for cach one of them (sec
Fig. 47.18) '

Joint 7
IM= 413,785 —13.785 =0
Joiat 2
IMo= —T.4204 11.189—3.T14=10
Joint 4

M= —0.898 48806 =0

(b)Y Method eof deflections
Compute the algebraic sum of the areas hounded by the bending moment
diagram along membors 3-2-4-5 forming a closed contour. In the general case
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these areas should be divided by the rigidity of the corresponding member but
in this partienlar ease all the moments of inertia are the sume and therefore

2 __‘:).1 T4 £ 896 (= =4
"

£ 896

Fig, 47. 18

we may simply caleulate the valuo of Q. Those of the areas which are situ-
ated inside Lhe contour will be reckoned positive

. 4,257 —11.1% .896—3.714

g = 11257 = 11.139 . 6.896 . 1%

% 4+':*i35—2'3__-§;’5x B —B.718+6.720 = 0
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. Conmstruction of the shear diagram. The ordinates to the @ diagram wilt
he oblained using the expression

My — M,
Orl=q:+ £ In n-l

The following are the shears at various cross sections:
Section 0 of column 0-7

Qo=3} 1-—3-;—8—5= 7.595 Lons

Scetion 7 of the same column
Quo=+3—2x 84 2500 —1 585 tons
Seetions 7 and 2 of [the inclined bar 7-2
13,9854 7.425
T =

012=021# —4.242 lons
Scetions 2 and & of column 2-2

_ 11.139 +14.257

Qu=Qn=—"T¢——=3.733 tons
Sections Z2_and 4 of crossheam 2-4
Oni= Qi __3.7141-6.896= 2652 tons
Sectiony 4 and & of column £-5
Q;5=0M=M=2.6?2 tons

4
These values have permitted the construction of the shear diagram given
iu Fig. 48.13. :

10. Checking the shear diagram. Let us pass a section through the lower
ends of the three columns and let us consider the equilibrium of all horizontal

2
29
2
e

&t

AT

r
I

25 === 2.657
7595 | = ? ;
7595 a7m 2672 y G489 et b5
Fig. 48. 13 Fig. 49. 18

projections of the forces acting on the upper portion eof the frame
FX ==2x34-8—7.595—3.733—2.672=0

11. Construction of the dingram for normel stresses. This diagram will
be obtained isolating in succession all tho joinis of the frame. The normal
stresses acting in all the members will be derived from the equilibrium of these
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joints. Stresses causing extensions will be reckoned positive. All the necessary
operations are given in Table 5.13. The desired diagram for normal stresses
appears in Fig. 40.43.

12. Checking the diagram for normal stresses. Pass as previcusly a section
through the lowor ends of the columns and write the equilibrium equation
of all vertical components of forces and reactions applied to the upper portion
of the structure

IV = —6.4994-3.847 2,852=1)

This equalion being satisfied, the stress analysis of the frame may be con-

sidered complete.

12.13. THE MIXED METHOD

In the method under consideration one part of the unknowns
represents [orces (just as in the method of forces) and the other part

: Upperl'.rfary 1"’
= EOWPI‘\J‘fﬂr’y
| 7
(a)
Fig. 50.13

angles of twist and deflections just as in the slope and deflections
method. Thus, the unknown forces and the unknown displacements
will be dealt with simultaneously.

The applieation of this method will be explained using as an
example the two-storicd frame shown in Fig. 50.13a. Let us first
cstablish the degree of redundancy and the number of unknown an-
gles of twist and dedlections for each of the two stories. These data
are given in Table 6.13,

Table .18

Numher of onknown
Story Degree of redundancy angle!s It'f)r E\'Ml apd
deftections

Lower 9 2
Upper 2 12
Total 11 14

&1—R53
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It is ohvious that the stope and deflections method can be advanta-
geously used for analysis of the lower story while the method of
forces i¢ better Nt for the upper one.

Ihe mixed method based on the simultaneous use of forces and
displacements as unknowns was introduced in the U.S.5.R. by
Professor A. Gvozdev in 1927. The application of this method to
the two-storied frame under consideration will lead to a reduction
in the number of nnknowns to 4 only from 11 il the method of forces
were used, or from 14 if it were the slope and delleclions method.
These unknowns will represent the angles of twist of the lower {loor
joints and the stresses acling at the gable hinge. The conjugate
mixed strochure is ropresenled iu Fig. 50.13b. This stroctureYis
derived from the given one Lhrough the elimination of (he con-
steaints al the Lop hinge and through the introduction of imaginary
eonstraints at the joints of the first floor.

Let us form the simultaneous equations of the mixed method.
These equations will oxpress that the reactions of the imaginary
constraints due Lo the unknown angles of Lwist Z, and Z, as well
as the mutnal displacements of the two branches of the frame along
the directions of X, and X, are nil

Zyry Loty Xorig - Xiryy - Byp == V)
Loy A Zarga -+ Xgrag + Xyre, -+ Ryp =10
Zyay + Zp03s + X333 + X85, + Aap=0
Zi84y 4 ZaBuz + Xobia + Xubig + Aip =0

(15.13)

A closer examination of cach of the above equations leads Lo the
following conclusiong, In the first equation:
Z,ryy = reaction of the imaginary censtraint at joint 7 due to the
rotation of this joint through an angle Z;
Zaris = reaction of the same constraint due to the rotation of joint
2 throngh an angle Z,
X 4 g = reaction of the same constraint due to the applicalion of
the forece X3 al the top hinge
X,ry, = reaction of the same constraint duc to the force X,
Ry, = teaction of the same consltraint due to the applied load.
The sum of all the above reactions must equal zero for the constraint
introduced at joint 1 is in reality nonexistent and therefore uncapable
of developing any reactions whatsoever. Thus, the first of the four
cqualions is an equilibrium equation expressing that the reactive
moment of the imaginary constraint at joint 7 due to all the unknown
forces and displacements as well as Lo the applied loads remains nil.
The second of the simultaneous equations (15.13) conveys the
same idea and the meaning of all its terms is also exaclly the same
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with the only dilierence that they all refer to the imaginary con-
straint introduced at joint 2.
Next let us examine the third equation of this group.
Zbsy = mulual deflection along the horizontal of Lhe two hranches
of the conjugate structure caused by the rolation Z,
%38 3, = displacement along the same direction due to the rotalion Z,
X044 == dellection along the same direclion due to the unknown
group of forces X, ilsell
X84, = deflection along the same direction due to the unknown
group of forces X,
Ayq, = deflection due to the applied loads
The sum of all these deflections must be nil for the eristeng hinge
prevents all mutual displacements of the two branches of the frame.

Fig, 51.18

Consequently, Lhe third equation expresses the idea thal the displace-
ments of a eertain point remain nil which means that this equa-
tion is a kinematic one. The fourth equalion of the simultancous
system (15.13) expresses exactly the same idea with reference to Lhe
mnbwal vertical displacoment of the two branches of the frame at the
top hinge,

The coefficients to the unknowns entering these equations belong
to four different groups:

1. Coeflicients representing reactions due to wnit defiections or
fwists as for instance ry,.

2, Coeflicienls representing reactions due to unit forces or moments
as for instance r,.

3. Coelficients representing deflections or twists due to unit dis-
placements as for instance &5,

4. Coeliicients represenling deflections or twists due Lo unit forces
or moments as for instance §4,.

All these cocflicients will be compuled as described in the corre-
sponding articles of the present and previous chaplers,

41
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It should be noted that for the conjugate structure shown in
Fig. 50.136 only one pair of coefficients to the unknowns cnlering
equations (15.13), namely 8, and 8,3 reduce to zero, the unknowns
X; being symmetrical and the unknowns X, anlisymmetrical. ‘I'he
free terms Ryp, Ag, and Ay, will be also nil for the loads acting on
the upper part of the frame are nil themselves. Even if the lower part
of the frame were nonsymmeirical &3, and §,; would remain nil,
their values being determined by the multiplication of bending
moment diagrams induced in the difierent members ol the npper
portion of the frame. Were the unknown angles of twist replaced by
their symmetrical and antisymmetrical components (Fig. 51.13),
a greater number of coefficients Lo the unknowns would become nil
and the system of simultancous equations (15.13) would itself fall
into two independent groups, Lhe first containing symmetrical nn-
knowns

Zyry 4 Xsris+ Ryp=0

Z8g+ Xsbas+Ngp =0 (ifAgp7=1)
and the second containing the antisymmetrical ones

Zoroga+ Xirou+ Rpp =0

Zobio+ XiBuu - 8eo=0 (ifA;p==0)

The principles of reciprocal works and displacements provide
for the following relations between the secondary coelficients Lo the
unknowns of the mixed method

rm=rnm
S ="0mm (16.13)
Tmn = —6nm

Problem. Form the system of cqnnnioal equations for the [rame given
in Fig. 52,18 and dotenmine the coefficients to all the unknowns nsing that

; Zz g
| 2»@331&111{11‘
Recfundant ’

structure

! l b
1)(!

Fig. 52.13 Fig, 53.18

mothod which leads to the minimum number of unknowns. Tt is assumed that
the cross sections of all the members of the frame remain constant throughout.
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Solution. The choice of the method will be based on Table 7.43. This table
shows immediately that the mixed method will lead to the best results, Indeed
were this method adopted, the number of unknowss would equal two, while

the method of forces would lead to four unknowns and the slope and deflections
method—1to seven unknowns.

Table 7.18

5 Iegres MNumber of unknown

Portion of structure of redundancy twists and defleclions
Lelt-hand 1 6
Right-hand 3 }
Total 4 7

The conjugate system which showld be adopted is given in Fig. 53.13. All
the values are expressed in tons and metreg. The simultaneous equalions permit-

Fig. §4.18 Fig. 55.13

ting the determination of the unknowns X, and Z, become in that taso
Xy +Zpdgp+ Ay =0
X1T21+Zaf22+ﬂzp=ﬂ

The coefficient &y represents the displacement due 1o a unit force and

will ]1;. cg:tcrmined raising to the second power lhe Afy diagram given in
Fig. 5%.1

4 T4X5. 2, .5 00, " 192
du=—7 [Tx3x4+-3(2x4 +2x8 +2><4><3}+s><:a><a:|_:,F

The cocfficient 8;, which represents a displacement due to another dis-

placement will be derived from the geometry of the strueture as shown in
Fig. 55.13

Sio=uan'cosa=Spcosau=Ig
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The angle of twist ¢ being equal to 1 and I to 8, the value ol cvef-
ficient &g5 becomes equat to vight *

The displacement 8¢ will he reckoned positive for it [ollows the
direction of the reaction X,. The coolficient ryy represents Lhe reaction of
the constraint introduced at joint 2 due to a wonit force X,. The value
of this coefficicnt may be derived from the equilibrium of this joint
(Fig. 57.13)

My rgy 4 8=10)
wherelrom
Fog = —8
The same maguitude of this coefficient could be oblained direetly from Lhe
refation ryy = —8, 0.
The coelficienl rgs ropresents the reaction of the same conslraint to a unil
rotation Zy of juint 2 (seo Fig. 55.13). Hence, this coefficiont may be determined

22
[ [—<
Lp=1
i L2
|l §

| Z» z
Fig. 56.13 Vig. 5718 Fig. 58.13

using the oguitibrivm equation for the same joint acted upom as shown
in Fig. 58.13

EMy= rog— - —EJ =0
wherefrom

Fag== %- E-f

As for the free torms Ay, aud Ry, their values in the presenl case will
be given by

a

gi*
12

Agp=0; yp=—

as stipulated in the appropriate lines of Table 2.13.

13.13. THE COMBINED METHOD

The combined method is best suited for the analysis of symmetri-
cal redundant structures acted upon by nonsymmetrical loads. The

e

*The same magnitude of this coeificient would be ohtained by the method
deseribed in Arg. 15.8. The angle of twist of joint 2 should be represenied by a
vortical veetor (Fig, 3G.13) acting at this joint. The moment of this vector
about joinl 7 will equal 1 X 8=8=a,.
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use of this method will be cxplained using as an cxample the portal
frame shown in Fig. 59.13. Replacing the applied load P hy its
symmetrical and antisymmetrical components (Fig. 60.13z and b)
we arrive at two different loading cases for each of which Lhe num-
ber of unknowns can be easily determined.

Thus, in case one corresponding to the symmelrical loading the
displacement of the crossbeam 7-2 will remain nil and the angles of
twisl of the Lwo joints 7 and 2 will
be equal in amount and opposite
in sign, hence Z; =0 and %, = 7,
{Fig. 61.13a). 1t follows that if we
applied the slope and defleclions
method we would obtain in {hat
case one equation wilh one unknown

lmlh
~
[
Nl‘t]

only. Ff, on the conlrary, we P
employed the method of [lorces WJW .
using the simple structure of fal
/ 2
-0
£ £ P
i E E—-lh-— 2
—| E. e
3
s
i
i Aok
T T 7 8) 7
Fig. 59.13 Fig. 60.13

Fig. 61130 we would arrive at two equations with two
unknowns (the shearing stress X, being obviously nil).

Hence, the slope and deflections methed is the one to be adopted in
the case of symmelrical loading.

Next, let us consider the case of antisymmetrical loads, using as
conjugate structure the one shown in Fig, 62.13q. It is readily seen
that the number of unknowns will in this case equal two: ihe first
representing the angle of twist of joints 7 and 2 (which are equal
hoth in ameunt and direction) and the second one represcenling the
horizontal deflection of these two joints.

Consequently, the slope and deflections method in the case of anti-
symmetrical loading will lead to a system of two simultancous
equations with two unknowns.

On the other hand, if the method of forces were used we could
adopt the simple stalically determinate struciure given in Fig. 62.138,



(48 Slope and Deflections. Combined and Mixed Methods

which would lead to one unknown only, this unknown representing
the shear X both normal stress X, and bending moment X, being

AN 2227, ” X=0
. f‘l\ _Z_fﬁ ek
Wl INE 7 Moo #
Xz X,
I p £ £=0 2
Conjugale system Sirmple statically
of regundant determinate
beams Slructure
J 32 g 3
s
fay O Ry P
Fig. 61.13

nil. Thus we could once again oblain one equation only with one
unknown. Therefore the method of forces should be adopted in the case
of antisymmetrical loading.

ZZ=Z!
CNE 7 F il
1" 1 5
— § X [~ 2
z
Zh -
‘Wg {b! s
Fig. 62.18

Table 8.13 represents in a concise form the results obtained above.
Thus, the combined method will consist in the simultaneous applica-
tion of two differcnt methods as described above to two different
cases of loading of one and the same structure.

Table 8.13
Number of eguations
_—
Loudng Method waps aud Method to be used
of forces Lions
method
Symmetrical 2 1 Slope and deflectivns
method
Antisymmetrical 1 2 Method of forces
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14.13. CONSTRUCTION OF INFLUENCE LINE BY THE SLOPE
AND DEFLECTIONS METIHOD

The construction of influence lines for stresses acting at any section
of a redundant structure as well as for the angles of twist and deflec-
tions can be carried out using the slope and deflections method,
provided the influence lines for the displacements adopted as un-
knowns are constructed in the first place.

Let us study the construction of these influence Jines using as
an example the structure represented in Fig. 03.13 all the members
of which are of uniform cross section. The standard equation corres-
ponding to the conjugate system of redundant beams shown in
Fig. 64.13 hecomes

Zyry+rp=10
whereirom
Mip B p1
Z.}_ = . e T
LET T
since

Fip=— Sm

Hence the shape of the influence line for the angle of twist will
coincide with that of the diagram of vertical deflections §,; caused
by a unit rotation of the imaginary constraint through an angle

When the load unity P travels along the right span (Fig. 65.13)
we have

Tip= —-é—vv (1—v?)

and when the same load is situated within the left span (Fig. 66.13)
the same expression becomes

1
rp=+5v(1—v%)
The magnitude of ry will bo derived from the unit hending
moment diagram M, (Fig. 67.13)

36J | 3EF | 4BJ _ A0EJ
===

In the above expression the values of v and w may vary only
from O to 1, these two letters representing the ratio between the
distance to the load point and the span length. The values of ryp
in terms of v are given in Table 9.13.
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a ¥ =
&
Fig. 63.13 Fig. 64.13
bu(r-vy \p=1 1Pe] Lv(1-v?)
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-
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Fig. 65.13 Fig. $6.13
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Table 9.18

span | 0 rp | OPRRE [ sen| s | omp | O
Right | 1 0 a Left | 1 0 4

0.8 [—0.144 1| 40,0144 - 0.8 |-+ 01441 {—0.0145 -

0.6 | —0.1922|+0.0192 ;J 0.6 +m1mz-_&0wz?%-

0.4 | —0.1682|+0.0168 0.4 +ﬂ.m8£—ﬂluh8fj

0.2 | —0.0962|-+0.0086 0.2 |4-0.096 2| —0.0005 -
0 [h] 0 0 0 1]

The same table contains the values of the ordinates 10 the influence
line lor Z; given by the expression
rip
Ty

The completed influence line is represented in Fig. 68.13.

The influence line for the bending moments at an arbitrary section
k situated within the left span will be based on the following expres-

Zim—

Influence line for Z,

SR
]88 3
%?:3'6555 @® ui wl
- T T T -]

“p4t 461

Fiy, 6818 Frg. 69.13

sion as long as the load unity remains within the same span
‘%EJ
MhﬂM‘i;— Ziah

In this expression

Mp = bending moment at section % of a conjugate redundant
beam whose right end is fixed and the left one simply
supporled (Fig. 69.13)
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a), = distance fron the cross section under consideration to the
left-hand support
SET .
v—d-'?§-=react10n at the left (roller) support due to a unit rota-
tion of the imaginary constraint at joint e through an
angle Z; = 1.
The influence line for the shearing force at the same cross section
can be deduced from the equation
n 35-} ”
Qh=‘Qh_ 2 5[
When load unity P shifts to the right of the central support
the above expressions are simplified and become
7

ik argy
Mk='_" I8 Zl“’k; Qk:“—[—221

Let us construct the influence line for the bending momentis and
the shearing forces acting at a cross section situated a distance
0.4 I from the left end of the first span. When the load unity travels
along the first span the expression for M becomos

My=Mi=—22L 7, x0.41=m3 125 g,

)

Let us find the values of M} and Qf lor the conjugale redundant
beam of Fig. 69.13. As long as load unity P remains within the
first span to the right of section k, i.e., when u < 0.6 (sec Table 2.13)

' u 0 u2 K
M =T(3—u)0-4l; 0?¢=T(3—'”]

When the lead unily is within the same span bul to the left
of section k, i.e., when u 0.6

M =2 (3—u) 0.41— (0.4L—vl) = 5= (3—u) 0.41— (u—0.6) L
_ 3w
B=—"——1

The values of the ordinates to the Mf and Qf diagrams computed
using the above expressions are given in Table 10.13.

Table 10.18
i termmoru|  Mi @ |itenietu| M oh
0 0 0 0.6 0.17281 | —0.568
0.2 0.02241 | 0.056 0.8 0.08161 | —0.206
0.4 0.08821 | 0.208 1.0 0 0
0.6 0.17281 |  0.432
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When the load point shifts to the second span the ordinates to the
My and @ influence lines become equal to those for the influence

lpar
k o
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| I :-... {al :
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b ! | l
| f |
) ) ' b |
s I | I [ I
) Influence line Gforl I | Influence line for |
' ' : 0] 83 A
: @ ' ] LS| @ ' !
: Nle [ S ™
B e~ S/nfluence lind S 8 |
- I ] ] ey
TEEEE ey NS
1 STST i BEsR! | ’ a7,
) ) ~ gt | i fnﬂuence!mefgr(—t 2
! ! ggwg ! I | |' t&é-h |
=BTl e P | S58§
PfeeES! 'l (chy | | S8 S Sl
S Sy ==
! c"s%&“a | | i gg@&:‘ =l |
il ', 1 8SS% | i
1  influence line for My | : SRS :
(d) : ! I8y : i Vinfluence line for Qx|
( @ I S S8 | ! |
I | Se a8 I )
=SS S d i ;
Dy e S B
ol ]
ES88
CTR-
Fig. 70.13

line for Z, (see Fig. 68.13) multiplied by the following factors respec-
tively
( 3BT 3EJ 12FJ) il (__BEJ)

—Tah—_“"‘—‘—‘-xo{tz—»'—_ 2

Figs. 70.135 and ¢ and 71.13b and ¢ represent the influence lines
for the different terms entering the expressions of M, and @,. The
completed influence lines for M, and @ shown in Figs. 70.13d
and 71.13d have been obtained through the summation of the ordi-
nates to the influence lines just mentioned.



14. APPROXIMATE METHOD
OF STRESS ANALYSIS
FOR REDUNDANT FRAMES

1.44. CLASSIFICATION OF APPROXIMATE METHODS

The aualysis of complicated frames using one of the exact methods
described above (method of forces, slope and deflections method,
the mixed one, ete.) often remains exceedingly labour consuming
even when all the possibilities of simplifying the equations have
beeu profited by. In such cases resort should be made to approzimate
methods which may be subdivided into two main groups.

Methods belonging to the first of these groups proceed by succes-
sive approximations (iterative methods) and therefore the precision
of the final results may be as great as desired. After a sufflicient num-
ber of approximalions these results will for all practical purposes
be eguivalent to those obtained using one of the exact methods.

The methods belonging to the second group are based on simpli-
fications introduced both in the arrangement of structural members
and in the distribution of loads. The simplified system thus ob-~
tained may thereafter be analyzed using cither one of the exact or one
of the approximate methods.

The simplifications introduced into one and the same syslem may
vary considerably and each of these simplifications will inftucnce
the final results to a different degree. Consequently, one must learn to
choose the simplest way of analyzing the structure with due regard
to the desired precision of the final results. In order to he able to do
so one must nnderstand very clearly the work of the entire structure
and at the same time one must be well versed in all the exact methods
of gtress analysis.

Approximale methods are particularly useful when choosing
cross-sectional dimensions for preliminary estimales, when com-
paring alternative layouts of one and the same structurc or when
designing ancillary or temporary buildings.

As no analysis whether cxact or approximate of a redundant
structure can be underlaken as long as the cross-seclional dimen-
sions and rigidities of its members remain unknown, the same methods
are frequently resorted to in the preliminary choice of such dimen-
sions.
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Approximate methods are seldomly used in the design of simple
frames, exact solutions being readily available in appropriate engi-
neering handbooks.

244, THE METHOD OF MOMENT DISTRIBUTION

The method of moment distribution belongs to the first group of
approximate methods constituting in fact a particular application
of the slope and deflections method described in the preceding chap-
ter. It leads to a very subslantial reduction in the number of equa-
tions and in the case of structures, whose joints can sustain angu-
lar Lwists alone but cannot be defiected, the method under congidera-
Lion permits to avoid completely the solution of simultancous equa-
tions with several unknowns.

For the first lime this method was suggested in 1929 by N. DBer-
nalsky and a few months later, early in 1930, a detailed descrip-
tion of practically Lhe same method was given by Prof. Hardy
Cross. The moment distribution method could be used for the ana-
lysis of all redundant framed structures but in practice it is applied
oitly to continuous beams and complicated [rames whose joints are
nol deflected by the applied loads. A maximum of one or two inde-
pendent deflections of joints may be tolerated.

The moment distribution method is particularly well fit. for the
analysig of multi-story building frames and closed frames of hydrau-
lie plants, where its application results in a very considerable redue-
tion of computation work. The convention of signs adopted previously
for bending moments and shearing forces remains unchanged and the
conjugate system of redundant beams is obtained in exactly the same
way as in the slope and deflections method.

The reactive momenls acling at the ends of the bars are consid-
ered positive when they act clockwise, the shears when they tend to
rotate clockwise the portion of the bar under consideration about
its far end. The reactive moments are usually denoted by the letter 37
with thrce lower indices the first two giving the numbers of juints
botween which the bar is inserted and the third, separated from the
first two by a comma, indicates the cause giving rise to that particu-
lar moment. The end of the bar at which the reactive moment is dev-
eloped is always indicated by the very first of the indices. Thus, for
example, M, , will represent the reactive moment developed at
end i of bar i-k, under the influence of load 2.

1. ANALYSIS OF STRUCTURES WITH F1XED JOINTS

Let us examine the structure shown in Fig, 1.14a. In Lhis structure
joint 7 alone can sustain an angular rotation and no single joint
may be deflected. The conjugate system of redundant beams shown
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in Fig. 1.14b is obtained by the introduction of an imaginary con-
straint preventing the rotation of joint 7. The reactive moment dev-
eloped by this constraint will equal

Pl Pl
Mg e Kamir— g

This moment will be reckoned negative for it acts in an counter-
clockwise direction. The moment produced at this joint by the load-
ing of bar I-4 tends to rotate this joint in a clockwise direction and

Fig. 1.14

as soon as the imaginary constraint is removed the angle of twist
of this joint will become equal to @;. This rotation will resnlt in the
appearance of the following moments at hoth ends of all the bars con-
verging at joint I (see Table 2.13)

AL 2EJS My,
Mls.i'—‘“ﬁ;&%; Mm.1=“-'imi%=‘%
3BT
Mla,1='xi—s“%; My, =0
AET 2ET M
My, 4 T 1 Q1 My, = 1 i 12"‘
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3 by

In Lhese expressions My, is the reactive moment induced at end
1 of bar 7-2 by the rotation of joinlL 7 through an angle ¢; EJ,,
is the flexural rigidily of bar 1-2; ;5 is the length of the same bar, and
so forth,

It is quile obvious that the angle of twist ¢, of joint / must be
such Lhat the sum of all the reactive moments acting al the near ends
of the bary converging at this joint should become nil. This can be
cxpressed by the equation

Mg, +Myg, - Mg, g+ My, =0
This equation is in no respect different from the one used in Lhe
stope and dellections method. Since all the bars meeting at joini
7 ave twisted through the same angle ¢, we may write
An’f]g’ 1 :.’1’}13' 1 :.!1:{]4, {i= f;g v ,:13 . .‘:.1:.
whero
EJg |

tyy -~ 3 13

OBy .+ Bl
” lyg

I'IB 14 = 1?
The terms i given above are frequently called the stiffness factors of
the frame members. In casc of hars fixed at both ends the sliffness
factor is equal to their flexural rigidity per unit Iength and for those
having one end built-in and the other freely supported this factor
equals 0.75 of their lexural rigidity per unit length.*

The bending moments due to the twist of joint 7 become equal to

RIIOORE - S IO
Mg, = ‘-iz_i_im_'_iufwﬂ.p— WMy, p
1. sy f13 _
Mg, 1= ol T T ‘-HMH,P_ —peMu, p
M - ———-—{’4‘-——M = — .M
= s e Mg, p
" i tye D e i
I'be values of gy = 3:%; Mig= ?—1& Mty = 2‘—;—! indicate that part of the

unbalanced moment applied to the joint which is taken up by the
corresponding frame member. Hereafter these values will be called
distribution factors. It is clear that for each individual joint the sum of
all the distribulion factors must equal one.

The algebraic sum of moments induced by the twist of joinl 7
with the reactive moments induced by the applied loads in the beams

of the conjugate system will yield the value of the resulting moments
acling at the joints of the given struectlure

Ll Pl Pt Pl ;
Mp=pzg 7 Mo=W33; Mu:“!i‘g——'—g—=‘(1—!m)%
+

*Certain authors attribute the name stiffness factor Lo the ratio —"{. usnally

denated hy the letler K. Ta our opinion, it fits better the term i.— 7T,
42853
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Mya £l
Mm:fzhzﬁri My =0

Pl P Pl
My=pup+5= [1+—M£l—") c 3

These moments must satisly the following relation
Mm-l—.-'lfﬂ—I—ﬂfu:O

The diagram of the resulting moments is represented in Fig. 1.14e¢.
The analysis of redundant structures by the method [under consid-
eration consists of the following operations:

1. In the first place the reactive moments induced in the beams
of the conjugate redundant system are determined using Table 2.13.

2. Next, equilibrium equations for each joint arc formed applying
to the joints balancing moments equal in amount and opposite in
sign to the reactive moments, these balancing moments being distrib-
uted among the members converging al the corresponding juinls
in dircet proportion to their stifiness factor.

3. Half the amount of the distributed moment is transferred (car-
ried over) to the far end of the bar provided Lhis cnd is also rigidly
fixod. In the eveat the far end of the bar is provided with a hinge
the carry-over moment must be nil.

4. New'ecounlerbalancing momenls are applied to each joint
thrown out of balance by the carry-over moments,

In order to accelerate the work several noncontignous joinls may
be dealt with simultaneously. The operalion is repeated until the
values of unbalanced moments become so small that they may be
disegarded. The final value of the bending moments acting al the
ends of each member of a structure are obtained summing up the
values of the fixed end moments with the valnes of the distributed and
carry-over moments, due consideration being given to their regpeclive
signs.

All the computations should be carvied out in labular form. The
table to be used should consist of a certain number of columns
and lines, each column corresponding to one end of cach member
of the structure. These columns are grouped joint by joint reserv-
ing, il necessary, extra columns fore exlernal momenls. The exact
procedure to be followed when no joint of the structure may be
deflected will be described in detail in the following problem.

Problem 1. Required the bending moment diagram for all the members
of a roof triss with rigid joints represented in Fig. 2.14a. The length of all
the bars, the relative values of tho moments of inertia and the loads are clearly
indicated in the samo figure,

Soiution. Since all the joints of the given lruss are completely vigild thir

stiffness factors of all the bars will amount to i = -;i—. Assaming that £ —1
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and referring a1l the moments of inertia to J,; we may write ¢ = '..fJ_I The values
[}

of the stiffness factors thus ebtained (or to be more precise, their relative values)

are given in the third line of Table 1.14.

Table 1.14

Joint No. 1 4 3 2
Bir No. -2 | d-d | 40 | -2 | 48 | 34| 3-2 | 2.3 | 24| 2.1
Stillness 67 133 | 133 67 133 | 133 &9 80 67 | 67

fuctor ¢

Distribution | 0,333 | 0,667 | 0.40 | 0.20 | 0.40 | 0.60 | 0.40 | 0.40 |0.30 |0 30
factor w

Fixed end| — [—1.40] 1.40 | — |—1.40{1.40 | — — - -—
moments,
Lon-me-
tres
AT | B3] 04T — — — — -— — 0.2
Palane-| & — - == — | —hA2] =0 84| —0,56|—0.28] — | —
ing ol § £ — [—0 =002 0, 01—=0.02(—0.01f — - N
jeints 2 — —_ —_ — _— i oMl 0.0200.01|0.01
| — o.M — — == = == = S

Resulting 047 | —0.47| 1.85 |—0.01|—1.84| 0.55 |—0.55—0.26]0.01 | 0.25
bending
mements

Having dotermined the stifiness factors procced with the ealeulation of the
distribution factors, as indicated hereunder for joint 4

iy 133
= = = =1} 4l
T e S T B Gl
tin 67 .
= = == ”- 2
M et 33 0
iia 133

| R . W5
Has Igaigat iy 333
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It should be always kept in mind that the sum of all the distribution factors
must be always equa) to one.

Tha fixed end moments corresponding to the redundant beams of the conju-
gate system are given by

; ; gi?
J'Iqr’_;” p =jw,‘3. p=':. —_— ;‘lrf;.]_l p= —ﬂf;{.ﬁ, ."?= —-—1"2_ -
2% 3,75
- — L f? v = —1.40 ton-metres

These moments should be entered into the fifth line of Table 1.14.

All the above entries having been made, we may proceed with the balancing
of the momont acting at joints I and 2 of the truss, jointg 2 and £ remaining
in equilibrium for the time heing.

Fig, 2.14

At joint I the unbalanced fixed ond moment 37y, p equals —1.40 ton-metres,
this moment being directed counterelockwise. This moment will be taken
up by the bending moments acting at the ends of all the hars converging at the
joint under consideration, these hending moments heing caleulated as follows

Mg, 1=0.323 X 1,40 =0.47 ton-metro
M']!" 1 =0.067 ¥ 1.40= 0.93 ton~metre

The eacry-over moments which must Yo transferred to the far ends of these
two bars will amount to

Mayq, 1 =0.50 % (.47 =~ 0.24 ton-metro
My, 1=0.50 x 0.93 = 0.47 ton-metre

Passing 16 joint 3 we note that this joint is acted upon by an unhalanced
moment My, p amounting to 1.40 ton-metves ucting cleckwise. This moment
must be distributed as follows

My 3—= —0.60 % 1,40== —0,84 top-metre

Mg, 5= —0.40x 1.40= —0.56 ton-metre
The carry-over moments are vqual Lo

Ma, g — 150 X 0,84 = —0.42 ten-melre

Mog, o = =000 3¢ 050 = —01.28 ton-melre
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Balancing joints 7 and 3 as described shove we havo disturbed the equilib-
riom of joints 2 and 4. The unhalanced moment al joint 4 amounts now Lo

My== My, (+ Mg, 3=0.47—0.42=0.05 ton-motre

Distributing this moment among the Lhree bars converging at joint 4 we
obtain

My, p= —0.40 X 0.05= —0.02 ton-metre
Mg, = —0,20 X 0.056= —0.01 ton-metlre
Myg, 5= —0.40 X 0.0 = —0.02 ton-metre
CGne hall of each of these moments will he again carried over to the far
enl of each of 1ho bars
Mig, g= =05 X 0.02= —0.0! ton-metro
Moy = —0.5x0.0l= —0.005 ton-metre
My, 5= —0.5 X 0.02= —0.01 ton-motre
Proceeding in exactly the same way for joint 2 we shall find that the
unbalanced moment transmitted to joint I (M;,,) cquals only —0.01, This
unbalanced woment is very much smaller than the one found previously, its
value being practically no %reater than the degree of precision of all our compu-
tations. Consequently, no further approximations are necessary for the amounts
of all the unbalanced moments which will have to be dealt with will be smaller
than .01 ton-metre.
The eomputations given in Table 1,14 ropresent all the operations necessary

to solve the problem. The bending moment diagram constructed with due regard
lo the sign convention adopted is shown in Fig, 2.14b.

2. ANALYSIS OF STRUCTURES WITH DEFLECTED JOINTS

The analysis of structures whose joints may be deflected requires
that in addition to constraints opposing the twist of these joints
imaginary supports should he introduced preventing all indepen-
dent dellections. Schematically thesc supports may be replaced
by a corresponding number of supporting bars. As previously, the
bhending moments induced at the ends of all the redundant beams of
the conjugate system should be caleulated using appropriate ready
made formulas or tables. Next all the joints should be balanced
by a series of successive approximations. Finally the corrections
taking eare of joint deflections should be introduced. The exact
sequence of operations will be shown in the following example.

Problem 2, Required the bending moment diagrams for all the members
of a double-span frame shown in Fig. 3.144. Only one joint of this [rame can
sustain an independent deflection.

Solutien. The slifiness factors for all the members of the irame are computed
as follows
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U.‘5J33 .75 % 4

T e
igg= Ii?a =5_'—3%=1 31
x23=%=2£(? = 4.50

Knowing these values we may easily obtain the distribution factors as

_gEivym
(@ LTI geasserm
& 2 =27 K] %
o Q=22.0t =" l
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= el 3
= B
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Fig. 3.14
indicated hereunder for joint 2
g 1.125
e e B L B 1
R LU

TiaF fag 1.125+4.50
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The fixed end moments for the redundant beams of the conjugale systems
shown in Fig. 3.14) are
glf, _ 0.36%5.33

M, p= — My, p=—"5 = s = —0.86 ton-metzo
My, p=—Mg, p= __5%%?'4___ = 3;<242 = — 4,00 ton-meires
Moy, p= —:%s-- Q;;:z =— 3:;62 B K;;X 2  _18.8 ton-metres
My, p=%1'+ Q;:b = 3;(282 w2 ngxz =28.5 ton-metres

The equilibrium of all the joints pertaining to the system whose deflections
are provented by the imaginary support al the level of the crossheam is ensured
by successive approximations as shown in the upper part of Table 2.14,

The corrections taking care of joint defllections will be obtained expressin
that the total reaction of the imaginary support due both to the applied loads
and to the horizental deflection Z, is nil, viz.

R1p+r“21 =0

THere /8y is the reaction along Z, induced by the external loads, and ry,
s the reaction along the same direction due to the unit displacement Z; = 1.

Reaclion Ry, will be derived from the shearing stresses al the lower ends
of the eolumns (Fig. 3.14¢)

Qi p= _%——.%%g= —2.995 tons
033,p=—%:-"--=%=0.925 ton
o My Mg, gl 0.104-1.34  0.36x5.33 )
Qg p=— 548 g ) 5 = —1.23 tons

The equilibrium of the upper portion of the frame separated from ils
supports, requiring that $X =0, we have
—Qu2, p—Qa3, p — Q4. p— b5+ H1p=0
wherefrom
2.985—0.952 41,23 —0.36 x 5.334- Ry =0
amd consequently
Ryp=—1.38 tons
As for reaction ryy it will be found assuming that the horizontal heam of the
cunjugate system moves townrds tho right over a distance Z, = 1 (Fig. 3.144).
The shearing forees which would be developed in that case at the lower ends
of the columns (divided by EJy) would amount to

= 3J 42 3x3

()12.1=——J0!i,n =3~ =1.125

5. _BJw _3X4_

st.lmj—cﬂg;—m—-——@ =0.1875
127 128

54, 1= m‘—?a—gy=0-5325

Theso shearing forces are shown in Fig. 3.14d.
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Table 2.14
Joint No. e 3 4 3
Bar No, 2-1 2.3 3-2 3-6 | 8-4 | 4-3 | 4-5 b-d
Stiffness fuclor @ 1.125 4.50| 4.50| 0.75] 2.25] 2.25| 1.50) 1.50
Distribution factor pw| 0,20 | 0,80 0.60| 0.10] 0.30] O0.60p 0.40, —
Fixed end moments,| — |—188 | 28.50| — |—4.00| 4.00(—0.86 1.86
ton-metres {2 | 3,76 | 15.04| 7.52| — —_ — — —
3| — |—0.61|—192 |—3.20/—v.61|—4.50] — —
4 ot o= - — 0.500 1.00] 0.6 0.33
21 4.92| 769 8384 — | — | — | — —
3| — |—1.30|—2.60|—0.43]—1.31|—0.55] — =
2
and | 0.26 1.04| 0.52| — 0.20 .38 0.26] 0.3
. 4
Bulancing ol " ' : }
joints g’ — | —0.21 | —0.43 |—0.07|—0.22|—1.11} — —

and | 0.04 Q.17 0.08f — 0.03] 0.07] 0.04 .02

8 —  F—0.04|—0.07 |—0.04|—0.03 —u.01| — —

and | 0.01 0.03] 0.0 — 001 0.04) — —

L 3| — e 0B o T e B | o= —

Preliminary value of| 5.99)—5.90| 18.14|—3.71 14,43 —0.10) 0,40 1.34
bending = moments,
Lon-metres

Beuding moments due |—2.23  — - |—0.75 — — —1.60}—1.6%
to unit deflection Z,

and| 0.45 1.80| 0.90)] — 0.650) 1.01] 0.G8] 034
RBalancing  of

juints 3 — | —0.20|~0.30)—0.06—0,20{—0. 10| — —

|
L ¢ 004 o0.6] 0.08 — | 0.03 0.06 0.04 0.02
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Table & 14 (econcluded)

Toint No. g 3 d &
5 —  |=0.04 |[—0.07)—0.01] —0.03—0.01] — 2
2
Bulancing o § g1 g01| 003 ot — | — | 0| - | —
Joints .
3 — —_ =001 — - = - =

Correction correspond-|—1.75 1 1.73| 0.52|—0.82] 0.30| 0.97|—0.97|—1.34%
ing to Z;=1

Correctione orrespond-|—1.60| 1.60| 0.47|—0.74] 0.27| 0.88/—0.88/—1.21
ing to Z;=012

Final values of bend-| 4.34|—4.30| 18.61|—4.45[—14.16| 0_78/—0.738| ©.13
ing moment, ton-
melres

The fixed ond momenis caused by the same displacoment of the horizontal
beam equal

iﬁzl. q = = 1.125 x 21= '—2-25
Jﬁsﬁ. 1= —01875 X h= —075

M gy Hy, 2e —0.8925 aTs(sﬂ_ —1.6Y

The bending momenls at the joints of the given redundant sitructure due
to the same wnit displacement Z, = 1 will be obtained balancing the joints
as indicated in the lower part of Table 2.44, Knowing these bending moments
we may find the correspording shearing forces at tho lower ends of the columns
as woll as the reaction ry which equals the algebraic sum of shearing forces
acting at the top of these columns. These shears and the reaction ryy equal

Mg 1.75

Qa1 =— o == =875
= My 082 ...
Qs 1= S e T—0.2OD
Oiaym — Mint Wiy _0.971.33_ 0 0

Tis 5.33
r1s =z, 1+ Qs 1 + Qs 1= 0.875 4 0.205 4-0.433 = 1.513
We may now find the actual value of the deflection of the upper part of
the [rame
Hip 1.38

= —TIT-‘—— +m=0.912
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The pozitive siga of this deflection indicates that its direction roincides
with the one adopted. The corrections which must be introduced on the bending
montents will now he easily obtained multiplying the magnitudes of the moments
due to a unit deflection by tho actual value of this deflection which equals
00912, Adding these corrected moments to those obtained in the upper part
of the table disregarding the horizontal deflection of the crossbeam we obtain
the final values of the required moments (Fig. 3.14e).

[¥ several independent deflections could occur in the given struc-
ture it would become neecessary to introduce separately the corre-
Lions due to cach of these deflections on the values of bending mo-
ments obtained for the non-deflected structure. The real value of
each of these deflections would be derived [tom a sysiem of simul-
taneous cquations. The number of these equations would be oqual
Lo the numher of independent deficetions and therefore would re-
main very much smallec than the number of equations used in any
of the exaet methods. Thus, if there are Lwo independent joint
deflections, regardless of the number of unknown angles of twist,
we shall have Lo solve only two cquations with two unknowns given
herennder

ruZ, + rigZs+ Ry =10
PoZiyA-TeaZiy+ Rap=0



15. MODERN DESIGN METHODS

1.15. BASIC PRINCIPLES

Until quite recenlly the design of all engineering structures was
based on permissible stresses. This means that the internal forces
(bending moments, shearing and normal forces) in different mem-
hers of the structure were determined using the methods developed
in Lhe Theory of Structures assuming that the whole structure
works as a perfectly elastic body. The selection of the cross-sec-
tional dimensions of these members was based on formulas established
in treatiscs on the strength of matorials and was aimed at keeping
the design unit stresses in these members within the permissible
ones. As for the permissible stresses themselves they were taken
equal either to the ultimate strength of the materials or to the
stresses corresponding Lo their yield point divided by a certain
faclor of safety. Ta accordance with this method the general ex-
pression ensuring the strenglh of the structure could be wrilten as
follows

-0
T

Ti this expression ¢ is the design Stress, o6y;: is the ultimate
strength or yicld strength of the material, and K is the safety
factor (K> 1).

However, it became soon apparent that for conercle, reinforced
concrete and masonry structures results ohtained using the method
of permissible stresses were frequently in contradiction with data
based on observation or on experimental work. This has led to the
creation of a new method of eomputation usually known as the
“yltimate loads method”. In this method the safety factor is no
donger referred to the maximum wnit stresses arising at different
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points of the structure but to the ultimate bearing capacity of the
cross section of a member or of the structure as a whole, In this
method the general expression ensuring the strength of the member
or structure under consideration becomes

2 o Syt

Here S is the internal force acting in the member under consider—
ation, Suz is tho ultimate load which the same member is capable
to carry (by ullimate load we mean a load just sulficient Lo cause
its failure), and K is the safety factor. As a general rule the nlti-
mate loads are caleulated with due consideration of possible non-
elastic deformations.

Both methods mentioned above sulfered from one and the same
drawback: the value of the safety factor remained constant while
in reality it should depend on a number of circumstances connected
wilh the structure under consideration.

At the present time the U.S.S.R. Building Codes

uire that

with the method of wltimate states developed by a group of Soviet.
scientists under the direction ol Acad. V. Keldysh and Prof. N,

The term ullimate state refers to such a state of the structure or
of one of ils members which makes further service of this structure
impossible, whether due to insnfficient hearing capacity, or to the
appearance of cxcessive dellections and deformations or fmnally to
the development of some Iocal defects. In the general case
the following three ultimate states should be taken into consi-
deration: :

1. The ultimate state characterized by the loss of bearing capac-
jly due either to lack of strength. to loss of stability or to fali-
gue (in the case of repeated loading).

2. The ultimate state characlerized by the development of cxces-
sive deformations such as deflections, twists, elc.

3. The ultimate state characterized by Lhe formation and opening
of eracks, or the appearance of other local defects preventing further
use of the structure, as, for instance, loss of impermeability in a
reservoir, ete.

Rach of the above ultimate states may develop under the in-
fluence of numerous factors, the main being

{1) the type and intensity of external loads and other actions;

(2) the strength and other mechanical properties of building
materials;

(3} the conditions wnder which the structure has been erected
and will have to work.
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The desigu must ensure that during the service life of Lhe strue-
ture none of these ultimate states will be allowed to oceur at the
same time preventing the overexpenditure of building malterials.
“T'he problem may be approached from three different angles:

1. It may be necessary to determinc the ultimatie load for a
given structure, in other words, to find the magnitude of the
loads which will lead te the development of any one of the ultimale
states.

2. One may be required lo choose the minimum cross-sectional
dimensions ol all the structural members which would ensure against
the appearance of any of the ultimate states under a given loading,
acting under a given sel of conditiouns.

3. One may be required to find the real safety factor of a given
atructure under a given system of loads or, in other words, to lind
the ratio between the ultimate load and the applied one.

In the method of ultimate states the single safety lactor used
in the two methods mentioned previously is replaced by a sel of
differentiated factors.

Thus, the design loads (both live and dead) used in all the com-
putalions are obtained multiplying the service or normal Iloads
by a factor n called the overload jactor. This factor is intended to
take care of any poessible increase of Lhe applied loads over and
above the magnitude of the normal service loads (when the work
of the structure becomes aggravated by a reduction of certain
loads, the overload factor musl take care of this cventuality). The
overload factor will neccssarily vary depending on the loading.
Thus, for instance, the overload factor for dead loads and hydro-
static pressures adopted by the U.S.S.R. Building Codes is quite
small and equals only 1.1, while the same factor for live loads car-
ried by the loors ol dwelling houses reaches 1.4. For wind pressure
the overload factor equals 1.2, for snow 1.4 and for the pressure
exerted by granular materials it should be taken equal to at least
1.2. When certain special or exceptional combinations of loading
are taken into consideration an additional factor called the com-
binations jactor should be introduced on all live loads, this factor
accounting for the extremely low probability of all live loads
reaching their maximum values simultancously. The numerical
value of this factor usually ranges from (.8 to 0.9.

The design strength of materials is obtained multiplying their nor-
mal strength (the latter being stipulated by appropriate standards or
obtained by direct testing) by a uniformity factor k, this factor
taking care of any possible drop in the strength of the material
used (as compared with the aforesaid normal strength) caused by
some fluctuation in its mechanical properties. This factor will there-
fore depend solely on the properties of the material under consi-
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deration, The numerical values of this facter adopted by the
U.S8.8.R. Building Codes are:

for structural low carbon steels from 0.8 to 0.9

for timber working in bending and for masonry work (.4

for concretes with cube strength between 230 aund 600 kg per

sq ¢m approximately 0.55.

The U.S.8.R. Building Codes contain the values of uniformity
factors % for numerous building materials with due regard to
manufacturing procedures and the use for which Lheso materials
are intended.

Peculiarities of working conditions such as the presence of ag-
gressive media, stress concentrations, the danger of briltle failure
as well as any other circumstances alleviating or aggravating the
work of the structure must be taken care of by the working condi-
tions factor m, whose value may become bolh smaller or greater
than unity. Thus, for instance, the working conditions factor for
riveted joints varies from 0.6 to 1.0 depending on the type of rivets
and on the use Lo which these joints are put; for wooden beams
whose minimum cross-sectional dimensions do not [all below 14 cm
the working conditions factor is taken equal to 1.15, and for cer-
tain precast reinforced concrete elements the Building Codes
authorize Lo adopt m = 1.1.

The working eonditions factor is applied to the ultimate load
and consequently a decrease in the value of this factor is equiva-
Jent Lo an increase in the value of the overall safety factlor.

When the design is based on the [irst ullimate state the general
expression ensuring Lhat the strueture complics with the strenglh
requirements takes the shape of the following inequality

S‘fh Sr,tft

where § is the interpal foree developed in the member under con-
sideration in the event of the most unlavourable combination of
design loads (service loads multiplied by the overload factor),
and Sy is the ultimate bearing capacity of this particular member
computed in terms ol its crogs-sectional dimensions, of the design
strength of the malerial (obtaired by multiplying its actual strength
by the appropriale uniformity factor) and with due regard to the
working conditions factor.

In a number of cases the building codes authorize the design
of structures on the assumption that lailure will ocenr well after
the appearance of nonelastic deformations. This leads to more
economical use of building materials, advantage being taken in
this case of the reserve of slrenglh existing beyond the elastic limit.

The strains and deflections are usually computed assuming that
the elastic limit of the material is never excecded and reducing to
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unity all the overload factors. The following sections will be devot-
ed Lo a brief outline of modern design methods ensuring the strength
of [ramed structures, these methods taking duc account of plastic
deformations peculiar to building materials,

2.15. DESIGN OF STATICALLY DETERMINATE BEAMS

For simplicity the rcal stress-strain curve of an elastoplastic
material is replaced by the simplified rectilinear diagram given
in Fig. 1.15. This diagram consists of an inclined line TePresent-
ing the elastic strains and of a horizontal line corresponding Lo

g
@ ) 59: Extension
o] O/
& \,@ 'S/ =
33 o)
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N4
7 Strains €
o
1]
empression

Fig. 1.15

plastic strains, The values of yield stresses in tension (,) and in
compression (o) may diifer permitting thereby a better represenla-
tion of the rcal properties of certain materials such as concrete,
ashestos cement and certain plastics,

It is usually assumed that plastic strains set in without any Lran-
sition period as soon as the stress in the material has exceeded
its yield point. For design purposes vicld stresses a, and o, are
replaced by the design strength of the material /2 or 72’ as the caso
may be, 1he latier being obtained multiplying yield stresses by the
corresponding uniformity factors.

Tt is assumed that plastic deformalions of the materials may
continue indefinitely and that the increase in strength due to strain
hardening may be neglected. Strictly speaking, the simplified dia-
gram can be used only in the event the plastic deformalions sus-
tained by the material do not cxeced the horizontal portion of ihe
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real stress-strain curve corresponding to the yield point. For cer-
lain building materials such as rolled steel, this horizontal stretch
may be quite short.

Failure of reinforced concrele clements usually occurs when both
the reinforcement and thoe concrete itsclf have entered the zone of
plastic deformations and therefore the simplilied diagram of
Fig. 1.15 remains to a certain extent applicable. Tn all cases where
brittle failure may be expecled the diagram of Fig. 1.15 becomes
totally wnacceptable.

Let us now examine the cross seetion of a statically determinate
beam symmelrical about its vertical axis and working in pure bend-
ing (Fig. 2.15e). For simplicity we shall assume oy = o,

2, > 5, ol?

—_— el Lt -]
..... = = r @
] & i) O
_—_ R @
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»‘?{J =1 Sy a, i Ty
fai k) {ch a) (e) i} (g}
Fig, 2.15

As long as the stresses at all the points of this cross scction re-
main below the elastic limit of the material {the elaslic limit coin-
ciding on the simplified diagram with the yield poinl) the stress
diagram for the cross section under consideration will consist of
two triangles shown in Fig. 2.15b. If the bending moment is in-
creased, the stresses in the cross section will increase also and the
outer fibres will eventnally reach the yield point (Fig. 2.15¢). At
this moment the purely claslic work of the beam comes to an end,
plastic strains beginuing Lo develop within the extreme libres of
the cross section.

The method of permissible stresses is based on the assumption
that the bearing capacity of an olement becomes completely exhaust-
ed as soon as nonelastic strains appear in the outer fibres of the
cross section. However in reality the stresses in all the [ibres located
closer to the neutral axis remain well below the yield point of the
malerial and therefore the loads and bending moments may be

further increased without entailing the immediate failure ol the
beam.
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For those of the fibres where the yield point has heen already
exceeded the stresses will remain constant while for the rest of
the fibres situated closer to the neutral axis they will continue
increasing with a gradual decrease in the depth of the elastic zone
(Fig. 2.15d}. If the bending moment is further increased the stress
diagram will tend to that of Fig. 2.45¢ at which moment the bearing
capacity of the beam will become completely exhausted and a pla-
stic hinge will appear. Such a plastic hinge differs from an ideal
one by the fact that it will function only if two couples acting in
apposite directions are applied to this hinge, each of these couples
being equal to tho ultimate resisting moment corresponding to the
section. The plastic hinge disappears as soon as the beam is un-
loaded or if the bending moment changes sign. In both cases the
beam reverts to an elastic state.

The bending moment at the plastic hinge which characterizes
the real bearing capacity of beam is considerably greater than the
bending moment cntailing the appearance of yield stresses in the
external fibres of this beam. The magnitude of this bending moment
may be obtained in the following way. On the formation of a pla-
stic hinge all the points of the extended portion of a cross section
are stressed to o, while all the points of the compressed portion
are stressed to a; = 0,

Since the normal force in a cross section working in pure bending
equals zero, the resultant of all the unit stresses acting over the
extended portion must equal the resultant of all the unit stresses
acting over the compressed portion, in other words

lPUyFl:UHFE

wherefrom

o Fz F a
I f Fg = qJ—II_-l—T
F is the total cross section of the beam.

This equation permits the immediate determination of the neutral
axis which may no longer coincide with the horizontal axis of sym-
metry for the given section. The real bearing capaecity of the beam,
characterized by the ultimate bending moment, may be now ob-
tained taking the moment of all the stresses acting at this eross
section abont the neutral axis just obtained. Replacing the vield
stresses o, by the design ones R and introducing the working
conditions factor m we obtain

Mae=mR [y dF 4§ v, dF ;| =mR (48, + Sy) = mBW,
Fol Fa
where y, and y, represent the distances of the elementary arcas
dF; and dF, (these areas being situated in the upper and lower
43853
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portion of the eress seclion, respeclively) to the neutral axis, and
S, and S, are the statical moments of these two portions about
the same axis.

The term (pS;+Ss) represents the plastic resisting moment of
the cross section and will be hereunder designated by W,

The magnitude of the ultimate resisting moment wou’ltf remain
unchanged if the moments of the internal forces were referred to
the gravity axis instead of the neutral one. For a rectangular cross
section the plastic resisting moment becomes

Yhht

M P

where & and h represent respectively the width and the depth
of the cross seclion, and

R .
hi_ ¢_ 4 ¥ """2 - .ip_i_.‘
When =1, as is the case for structural steel, W, equals ﬂ*—- and

4

consequently

Wy br2 DbRS

S 2 T e
W represenling as usual the elastic resisting moment of the cross
section.

When {==2 as in the case for ashestos cemenl we obtain
bh? Wy

f =2 = T
Wp=5 and -5 =2.0
Tt follows that the bearing capacity of structural elements may be
increased quite considerably if due account is taken of the plastic
steaing which may develop.

W
For H-beams and I-beams the ratio Tp equals approximately 1.15

(provided P = 1) aud in that case the plastic design becomes less
attractlive.

For those of the materials whose +§ faclor js the greatest Lthe eeo-
nomy derived from plastic design becomes very noticeable for it
becomes possible to increase the service loads twice or eves morve.

The distribution of stresses and plastic zones along Lhe span of
the beam is entirely dependent on the bending moment diagram.

During unleading the strains decrease along a straight line (dotted
line in Fig. 1.15) parallel to the one representing Lheir increase dir-
ing loading while the body still works as an elastic one. Hence
during unloading the material behaves again as a purely elastic
one and Lhe stresses at any particular stage of this operation will
be given by the shaded portion of the diagram obtained by super-
position and given in Fig. 2.15f.



3.15, Design of Sialically Indeterminate Beams 675

When the beam is completely unloaded the stress diagram will
take the shape indicated in Fig. 2.15g. The moment due to the
internal forces must vanish for upon ecomplete unlvading the bend-
ing moment becomos equal to zero itself.

It should be noted that the beaving capacily of beams carrying
transversal loads may be reduced considerably due to the influence
ol shearing stresses, which become particularly dangerous when the
olastic limit is exceeded.

Problem. Required to sclect the crosssectional dimensions of & simply
supported beam 6 m long made of luw carbion steel, the dead Joad on the benm
equalling 2 tons per metre and a concentrated live load of 5.0 tons heing nplplied
al midspan. The overlead factors equal respectively 1.1 for the dead load and
1.4 for the live Inad; the working conditions factor m equals 0.90. The design
strengtly of low carhon steel 7 will be taken equal to 2,00 kg per =q cm.

Solution. The design moment at midspan is

. Rl mpPl 11%20%x62 1.4x5x8
TR LA T
=9.9-+10.5=20.4 ton-metres= 2,040,000 ke.cm
The bearing capacity of a steel beam working in bending is given by
Muype =mRW, =0.9x 2,100 n="1.8%01",

Lel us adopt. #n I-heam whose plastic resisting moment W, =1.15¥.

Equalling the design boading moment to the ultimate resisting moment
of tho heam we find

Mgy =1,890W
whiclt leads to
1,890 x 1154 == 2,040,000
wherefrom
=040 em®
We shall choose 4 36¢ I-beam (the £7.5.5.R. State Standard) with a resisting

moment of 562 em3. Were the same heam designed using the permissible strosses
method we should have to use a 40c [-heam.

3.15. DESIGN OF STATICALLY INDETERMINATE BEAMS

The complete exhaustion of the bearing capacity of certain re-
dundant members of a structure will not entail its failure provided
the remaining members continue to form a geometrically stable
system capable of carrying the applied load. Plastic deformations
of the overloaded members will lead 0 a redistribution of stresses
which will increase the bearing power of the structure as a whole.
Complete failure of the latter will occur only when the number of
members whose bearing capacity has been exhausted becomes equal
to the number of redundant constraints increased by 1. The plastic
design of statically indeterminato structures may be carried ont

43%
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using the method of plastic hinges which, in its more goneral form,
is known in the U.S.S.R. under the name of the method of nltimate
equlilil:lrium. Both the static and the kinematic procedures may be
ulilized.

The kinematic procedure requires the knowledge of lines or
points of failure, permitiing the formation of equilibrium equa-
tions pertaining to the mechanism into which the structure will
be converted once its bearing power has been exhausted. It is usu-
ally assumed that all cxternal loads increase simultaneously and
in the same proportion and that their points of application. direc-
tions and signs remain unchanged. It is also assumed that the
pattern of the actual failurc will be the one corresponding to the
minimum value of the ultimate load.

Equations of ultimate equilibrium may be based either on statics
or on the principle of virtual displacements. In the Iatier case it is
assumed that infinitesimal displaccments occur; these displacements
remaining consistent with the constraints subsisting after the traus-
formation of the structure into a mechanism.

The static procedure requires that the internal forces shounld be
distributed in the redundant structure in such a way that together
with the initial or inherent stresses they should lcad to its failure.
For this purposc some distribution of internal forces in equilibri-
um with the applied loads is chosen and thereafter & number of
additional systoms of internal forces, cach of these systems being
balanced, i.e., corresponding to zero loads, are added thereto. The
number of these additional systems must be equal to the number of
redundant constraints of the given structure.

The ultimate equilibrium is reached when the bearing capacily
of certain members of the slructure becomes exhausted,

The real distribution of internal forces will correspond to the
maximum breaking load possible under the given conditions.

Both the static and the kinematic procedures if applied Lo the
sam¢ redundant structure will always lead to the same results.
In a number of cases resort may be made to the so-called method
of moment equalization, derived {from the kinematic procedure.

The appearance of each plastic hinge in a continuous beam always
corresponds to the elimination of one constraint and therefore
reduces by one the degree of redundancy of the given beam. Hence
the bearing power of the beam will be completely exhausted as
soon as the number of plastic hinges has become equal to the degree
of redundancy of the beam plus one.

It should be remembered however that the bearing capacity of
each single span will be also exhausted as soon as three hinges
appear within its length. For this reason every span of a continuous
beam must be also considered separately.
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Let us take the continuous beam shown in Fig. 3.15a whose
bearing capacity is required for the given distribution of loads.
First let us replace the given beam by a conjugate statically de-
terminate structure consisting of a serics of end-supported beams
as indicated in Fig. 3.456 and let us construct scparately for cach
of these beams the diagrams of bending moments induced, on the
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one hand, by the ultimate moment which may be developed at each
of the supports (Fig. 3.15¢)* and, on the other hand, by the bend-
ing moments duc to the ultimate Joads whose points of application
and directions are given but whose magnitudes remain unkuown
(Fig. 3.15d).

It is clear that the ordinates at the supports to the diagram of
bending moments entailing the formation of plastic hinges at the
said supports will represent the ultimate bearing power of the cor-
responding cross sections of the beam

-Mi,uz:: Mz, wity Mg, wis IWa. ult
The resulting bending moment diagram will be obtained by
superposition of the negative bending moment diagram due to the

+

#*This dinFram has been constructed on the assumption that the ultimate
strength of the beam varies from sypport to support.
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aforesaid moments at the supports with the diagram of positive
bending moments induced by the applied loads in each span of the
conjugate simple structure. The scales of these two diagrams will
be so selected that in each span the maximum positive ordinates
to the diagram of the resulting moments should represent the bearing
capacity of corresponding cross sections (Fig. 3.15¢). 'The numerical
value of the ultimate load for each span will be found equating the
maximum ordinate to the bending moment diagram pertaining to
the conjugate end-supported beam to the sum (in absolute values)
of the maximum ordinate to the resulting diagram within the span
under consideration with the ordinate at the samc cross seclion
due to the application of nltimate mements at the supports.

Thus, for instance, in the first span from lelt to right we shall
have

P ab M 3
1'}‘:‘ = ’}:‘“ + M4, v

wherefrom

My ant | Ma, urth
b ! ab

Since My, yie = M3, 4 for the second span we shall have
@2, utli
%‘- = My, ute -+ My, wt

Pi. ulf =

wherelrom

_ 8{My, wie My, )
4o, uit = —!Té___

Similarly for the fourth span we shall have

P 1,  Mj, 2M,,
&.;:u.: a:daz: e ;“”-}-MD. ult

wherefrom

Mg, it +2My, w1t +3Mp, unt
L

Knowing the values of the ultimate resisting moments we can
easily determine the ultimate loads for each span which will lead
to the value of the ultimate load [or the beam as a whole.

When the ultimate resisting moment of the continuous beam
remains constant the determination of ultimate loads becomes
particularly simple. Indeed in that case the desired result will
be achieved if the maximum ordinates to the resulting bending
moment diagram within the spans are made equal to those at the
supports (Fig. 4.15).

When it is desired to solve the inverse problem or, in other words,
to find the necessary cross-sectional dimensions corresponding to
a given loading, one should start by the construction of bending

Py =
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moment diagrams for cach of the spans regarded as a separate end-
supported beam. This being done, the values of maximum bhending
moments in the span and at the supports should be chosen in such
a way that their ratio should be the same as the ratio of the resist-
ing moments at the corresponding cross sections. This latter ratio
should be adopted beforehand for otherwise an infinitely great
number of solutions would become possible,

Assume, for instance, that it is required to construet the diagram
ot the design bending moment for the continuous beam of Fig. 4.15,
all the loads being known both in amount and in dircction.
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Assuming that the degign moments are equivalent to the ulti-
mate ones the desired diagram for each span will be obtained in the
same way as the ultimate moment diagram. First the bending mo-
ment diagrams induced by the given loading in all the conjugate
end-supported beams will be constructed and the pertinent ordi-
nales to these diagrams computed.

Thereafter one may proceed with the preliminary equalization
of the bending moment diagrams for each span as indicated in
Fig. 5.10b. If the cross section of the beam is to remain constant
throughout, its dimensions are choscen to resist the maximum bend-
ing moment. In the case under consideration the bending moment
acting in the first span is the groatest of all. It is obvious that no
plastic hinges will appear in any of the other spans under the given
loading.

[t it were required to construct the diagram of bending moments
leading to the formation of plastic hinges in all the loaded spans
one should proceed with the equalization of moments acting imme-
diately to the left and immediately to the right of each sapport.
In doing so, one should always start with the spans carrying the
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smaller loads passing thereafter to the spans characterized by gra-
dually increasing maximum bending moments.

Thus, in the example under consideration one should start with
the second span for which the preliminary bending moment diagram
will be adopted as the final onc. The diagram for the first span will

Fig, 5.15

be obtained immediately since the bending moment at the right-
hand support is already known (Fig. 5.134) and the one at the left-
hand support is nil.

Thereafter one should pass to the fourth span which is preceded
by the unloaded span 3. Hence the preliminary bending moment
diagram for span 4 can also be adopted as the final one. The diagram
for the third span will be obtained connecting by a straight linc
the ordinates over supports 2 and 3 which are already known. The
resulting bending moment diagram is represented in Fig. 5.15¢.
This diagram may be used for the determination of cross-sectional
dimensions both over the supports and within the spans.

It is clear that theso dimensions will differ from support to sup-
port and from span to span but the beam will be of cqual resistance
for the given system of Joads.

Other solutions could be found if the ratios hetween the resist-
ing momenls at the supports and in the spans were taken differ-
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ent from unity, If a bheam of equal resistance were not specified
still more solutions to the same problem could be obtained.

One could also use the bending moment diagram obtained for
an elastic conlinuous beam. The cross-sectional dimensions would
be based in thal case on the values of bending moments obtained
through the equalizalion of those at the supports with those in the
spans.

In certain cases it becomes necegsary to find the safety factor
for a given continuous beam carrying a well-defined system of
loads. In that case one must determine the bearing capacity of each
span, which should be done as indicated in Figs. 3.15 and 4.15
equalizing Lhe ordinates to the bending moment diagrams at the
supports and within the spans with the only difierence that the
bearing capacities of different c¢ross seclions should bhe now com-
puted disregarding the working conditions factors. The latter will
be calculated for each span scparately, dividing the magnitude
of the ultimate load obtained by the amount of the loads actually
applied. :

The same problem could be dealt with in a somewhat different
manner. One could start by the construclion of the diagram for
the equalized hending moments as in Fig, 5.15, derive therefrom
the required cross-sectional dimensions for each span and there-
after compare the bearing capacities corresponding to the dimen-
sions found with those of the given beam. This procedure will per-
mit again the determination of the actual values of the working
conditions factors.

Up to the present we have assumed that plastic hinges will
appear either at the supports or at those cross sectious where the
bending moments pass through their maximum. In actual practice
beams whose bearing capacity varies sharply from section to see-
tion are frequently ecncountered (for instance, reinforced concrete
beamsg). In these cases it is impossible to determine beforehand the
location of plastic hinges.

To find them one must first trace the diagram representing the
variation of the bearing capacity along each span (Fig. 6.15). Such
a diagram will usually consist of a positive and a negative branch,
since each cross seetion is capable of resisting both positive and
negative bending moments, even though their magnitudes may
differ considerably. The bending moment diagram should there-
after bo inscribed into the diagram mentioned above (the ultimale
resisting moment diagram) in such a way that the two should have
at least three common points. The location of these points will
indicate the position of the plastic hinges.

Assume, for instance, that the diagram for the resisting moments
along the first span of the beam given in Fig. 4.15 is represented



632 Modern Design Methods

by the broken lines shown in Fig. 6.15. Inscribing into the lalter
the hending moment diagram for the same span we shall find that
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the plastie hinges will appear in cross sections A and E. The ulti-
mate value for load P will be determined on the basis of these two
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In the case of a continuous beam of varying bearing capacity
plastic hinges may appear at different points as indicated in
Fig. 715, Each different set of these plastic hinges will lead to a
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different value of the ultimate load and therefore, for design pur-
poses. one should adopt the smallest of these values deduced from
the comparison of different failure patterns. It is obvious that such
failure patterns which are inconsistent with the stipulation of the
problem should be rejected.

When a beam carries both dead and live loads which may vary
in amount but whose ratio remains constant, the ullimate values
of these loads will be found using an envelope diagram for Lhe
bending momenlts. The ordinates to this diagram will be given in
lerms of a single parameter determining simultaneously the mag-
nitude of both dead and live loads. Assuming that the beam remains
elastic and having obtained the corresponding bending moment
diagram, one should proceed with the equalizalion of the maximum
bending moments with due consideration to the ultimate resisting
moments of Lhe beam. This being done, the required ultimale loads
will be easily found. When both the dead and live loads are known
beforehand the required cross-sectional resisting moments may be
computed equalizing the ordinates to the bending moment diagram
due to the above loads multiplied by the overload factors.

All the above leads to the important conclusion that the method
of plastic hinges permits the design of continuous beams without
resorting to equations based on the deflections of the structure.
It is worth mentioning also that the formation of plastic hinges
reduces the redundant continuous beams to the stale of a mecha-
nism, which is completely uneffected by such factors as the set-
tlement of supports, temperature changes, or erection defecls.
Partly fixed ends become equivalent to the rigidly built-in
ones.,

Once a continuous beam has been loaded beyond its elastic limil
residual deformations and stresses will appear. These stresses will
not balance within each section as was the case with statically de-
terminate beams, for the redundant constraints will develop certain
reactions which will not reduce to zero upon withdrawal of the
loads. The determination of residual stresses is rather complicated
but since these stresses have practically no influence on the bearing
capacity of the structure this question will not be studied here.

Problem. Dotermine the bearing capacity of a continuous I-beam shown
in Fig. 8.15, whose resisting moment W = 237 em3. The beam is made of low

carhon steel with a design strength of 2,100 kg per sq ¢m. The working con-
ditions factor m = 1.

Selution. The ultimate moment which can be developed by the cross section
of this l-beam working in bending equals

Myp =mBW 5 =mR1A5W =1.0 X 2,100  1.15 X 287 =
=573,000 kg.comt =573 ton-metres
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Since the bending moment within the span and at the support muet be equal
wo ghall have for the first span
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Similarly for the sccond span we shall find

L
qllg ;= 2.!',1'“::
wherefrom
Qupt = ——g Bt lsﬂi';““ W=5.?3 tons per metre

For the cantilever
12
Q'H.g 3 _ﬂ{ufl

wherefrom

M
B 2501 =35.10 tons per metre

4.15. DESIGN OF REDUNDANT FRAMES AND ARCHES

Frames and arches are usvally subjected to the simultaneous
action of bending moments and normal forces and consequently
we must study first the combined action of normal and flexural
stresses on a cross section working beyond its elastic limit. We
shall assume that the ultimate strengths (oc yield stresses as the
case may he) of the material in extension (o,) and in compression
(o, =1v0,) differ but that the cross section possesses at least one
symmetry axis in the plane of the bending moment Myy;. If in
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addition to this moment the cross section is also subjected to a
normal force N acting along its axis (Fig. 9.15), a plastic hinge
will appear at Lhis section when the diagram of fibre stresses will
take the shape indicated in Fig. 9.15¢. The neutral axis will shift
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towards the cdge of the cross section. ils distance from the centre
M,
N“” The magnitude of the

ultimate normal force will equal the resultant of all the fihre stresses
acting over the given cross section and will be given by

Nt = 6y (PF |~ Fs)
where F; and F, are the areas of the compressed and oxtended
portions of a cross section, respectively.

Since Fy — F, = F we can easily find the areas of both portions
just mentioned which will determine the position of the neutral

axis
=1y (1o 7). Fa=giy (1—F2)

wlf

increasing with the reduction of e =

F

In this expression Ngy; = Yo F represents the value of the ulti-
mate normal Ioad for the cross section working in direct compres-
sion. The maximum value of the bending moment which may be
applied simultaneously with a normal load N will be given by

Muu'*‘ﬂy('q’F:yi-}-Fzyz):M&u'V

where yy and y, are the distances of the centroids of the compressed
and cxtended portions o the gravity axis of the whole cross sec-
tion. and My = o,W, is the ultimate bending moment which
could be applied when the element works in pure hending. Hence
the value of v given hy

WF s+ Faye

P

will reflcct the influence of a normal load on the resistance which
a cross section may develop to flexural siresses, W, representing
as usual the plastic resisting moment of the same crot;s section,

V=
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The latter must be delermined with due consideration to the differ-
ence belween the values of the yield or ultimate siresses in com-
pression and in extension. For a rectangular cross section whose
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width and depth are given by & and 2 respectively and whose re-

sisling moment W, = Z{LIEM?—% we find
Nip=tyobh;  y=lThole
yz_—h;hz‘-h—;
-y (‘I'-'*'ii-'*z‘i-i;:;z) (44 (1 + ¢ %%) ( _"‘1%)

Tn Fig. 10.15 we have represented graphically the values of v

in lerms of the ratio % for different values of ¢. Similar graphs
ull
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could be obtained for reinforced concrete members. The examina-
tion of these curves shows that when the yield point or ultimate
strength ol the material in compression and in extension remains
egual (P = 1) the value of v is always smaller than unity. On the
other hand, when the said ultimale stresses or yield points differ
(p 5= 1), the value of v may become greater than unity, It follows
that in the latter case the ultimate resistance which may he devel-
oped by the given member to lexural loads will be increased by
the application of a normal load. The case when ) — 0 is purely
theorelical and therefore devoid of practical interest, For design
purposes o, should be replaced by the product mR,., or, in olher
words, by the design tensile strength of the material.

When designing redundant arches and frames the main difficully
will always consist in the determination of the position of plastic
hinges or, in other words. in the predietion of the failure pattern
for the given structure.

In a number of cases preliminary analysis of the structure as ap
elastic body may be quite helpful, for il may be assumed thal
plastic hinges will form al those cross sections where the bending
moments pass through their maximum.

The pattern of failure for an arch of two hinges will differ depend-
ing on the load points. If Lhe loads are symmetrical, failure will
oceur with the formation of four plastic hinges (Fig. 11.15a), their
number falling to three when the two central hinges merge
(Fig. 14.158). In the evenl of nonsymmetrical loading the number
of plaslic hinges equals two (Fig. 11.15¢).

It can be easily shown that the procedure of the equalization
of maximum ordinates to the bending moment diagrams remains
applicable to the design of two-hinged arches (Fig. 12.15).

Having replaced the given redundant arch by the conjugale
simple structure let us construct for the latter the diagram of bend-
jug moments M, due Lo the thrust X; as well as the 3, diagram
for an end-supported reference heam of the same span acted upon
by the same Jonds. The diagram for the resulting moments M will
be obtained through the summation of the ordinates to the A, and
A, diagrams with due consideration to their respective signs. It
should be noted that the outline of the M, diagram follows exactly
the shape of the neutral line of the arch. The desired solution will
be obtained choosing the scales for Lhe two diagrams mentioned
above in such a way that the maximum ordinates to the resulting
diagram at these cross sections where plastic hinges are liable {o
appear should be in the same ratio as the bearing capacities of the
same cross sections.

Since these cross sections work both in bending and in compres-
sion their bearing capacity must be determined in terms of v. As
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the normal stresses acting at each cross section are still unknown,
it becomes necessary to adopt some arbitrary value for this coef-
ficient. In the first approximation v may be taken equal to 1.0.

The resulting bending moment diagram obtained as described
above will enable us to find the magnitude of the ultimate loads
using the relation between the ordinates tu this diagram in the

Fig. 11.15 Fig, 12.15

same way as described in the preceding article for continuvous
heams. The location of plastic hinges will coincide with the maxi-
mum ordinates to the resulting bending moment diagram,

Were it necessary to obtain the bending moment diagram due
to a given system of loads regarded to be ultimate, one should start
by the construction of the diagram for the reference heam from
which the required diagram will be deducted using the moment
equalization method.

The pattern of failure of a fixed end symmetrical arch will depend
on the loading and may be either symmelrical or nonsymmetrical.
In the first case the number of plastic hinges will amount to six or
five if the distance between two central hinges reduces to zero
(Fig. 13.15a and &). In the second case failure of the arch will he
preceded by the formation of at least four plastic hinges as in
Fig. 13.13¢.

In order to determine the ultimate strength of a fixed end arch
lel us adopt as conjugate simple structure the one given in
Fig. 14.15a4 and let us construct the resulting bending moment
diagram Mz due to the simultaneous action of the unknowns X,
X, and X, together with the M, diagram due to the loading whose
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intensily remains also unknown. The numerical values as well
as the signs of the ordinates to the A7y diagram, My being eqgual
to My + My | My, remain unknown,

The final diagram for Lhe resulting bending momeals will be
oblained adding together the ordinates to the M, and to the My
diagrams measmed at one and the same ¢cross seclions (Fig, 14.158).
Since the system ol loads is nonsymmetrical, failure will occur

= e 0™ My

e i
M

Fig. 13.15 Fig. 14.15

with the formation of four plastic hinges which will open up alter-
nalively—one upwards and the other downwards.

The maximum ordinates (in absolute value) 1o Lhe resulting
bending moment, diagram must coincide with the location ol Lhese
plastic hinges and must be numerically equal to the ultimalte
strength of the corresponding cross sections. The signs of these
ordinates will change from hinge to hinge.

II the loads are known both in direction and in amouni, the
ordinates to the bending momenl diagram for the reference beam
arc completely determined permitting computalion of the ordin-
ates to Lhe final bending moment diagram for the arch. ‘[he influence
of normal stresses will be accounted for in the same way as ex-
plained previously for the case of two-hinged arches.

Problem, Hequired the final bending momenl diagram for a fixed-end arch
whaose neutral line follows a parabola, The span of the arch { = 12 m, its rise
f = 3 m and the nltimute strength of alf the cross sections in hending remains
the same. The arch is acled upon by a concentrated load P, = 20 tons applied
at the crown (Fig. 15.15a).

Solution. The final bending moment dingram will be obtained summing
up the ordinates to the bending moment diagram due to the thrust ¥ = X,

44 —853
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to those induced by the fixed end moments My = My = X; and Lo tho ovme
induced by the load P, all these diagrams reluting Lo the conjugate simploe struc-
ture represented in Fig. 15.156. Since failure of a symmetrically loaded arch
will occur with Lhe formation of five plastic hinges, the final bending moment
diagram will have the shape indicated in Fig. 15.15¢.

A{al

Fig. 15.15

The thrust will be determined using the following relation deduced from
that diagram
My, un -|-M’E.= Hf4+Me wit
Since

My uit=Me, it
wo obtain

A0 b
g ME _ Pud _20x12

R+ i =3 =20 tons

The 'hendi;;g moment at cross section X'p whose position is yel unknown
but which coincides with the plastic hinge D will be given by

Puit  __ I41Xp
3 40 I

e i g A -;— Xz

Mp,ure=Ma, uit+Mpy—Hyp=M 4, 01+ (I—Xp)=
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The bending mement diagram passing through its maximum at this point,
the lirst derivativo musl be nil and consequently

dMp 10
dXp + T
wherefrom Xp=3 melres. It [ollows that
T : .
Mp, it =M g, 01— 10X p+ 5 Xf, = —Mp, u1e~— 3015
wherefrom
Mp, wig= — 7.0 ton-melres

Next lel ug examine the simple portal frame given in Fig. 16.15,
This frame which is subjected to horizontal wniformly distributed
loads will collapse with the formation
of Lwo plastic hinges. Fig, 16.15 repre-
sents the bending moment diagram for
this frame provided the fibre stresses
remain below the clastic Limit of the
material. The normal stress in the cross-
beamm remaining constant, the localion
of the plastic hinges will depend solely
on the value of bending moments, and
lherefore the hinges must be located at ¢
and D where the said momoents reach
their maximum. For Lhe same reason
plastic hinges in the columns may form
only at poinls D’ and E.

Theorelically the number of possible combinations of plastie
hinges will equal six but practically this number falls to four,
namely, € and D, ¢ and D', E and D, and finally £ and D".

The ultimate strength of the frame must bhe delermined for cach
of these four possible combinations of plastic hinges, its lower value
indicating the one corvesponding to actuwal failure. In each case
the ultimate strength will be derived from the equilibrium of the
mechanism obtained by the introduction of two plastic hinges
[unctioning under a constant moment.

The exacl plastic design of multi-story building frames remains
still very complicated, but approximate methods are quite simple.

In the case of vertical loads alone resort can be made to the pro-
cednre described in the second paragraph of Art. 3.14, bending
moments heing equalized fov each span separately with due regard
to the ultimate strength of the cross section at the supports and
in the spans.

[n actual practice further simplifications are frequently iniro-
duced. Thus, in determining the bending moments at the supports

4%

Fig. 16.15
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the Joading of Lhe neighbouring spans is simply neglected. This
leads to a reduction of about 35 per cent in the support moments
when the live loads do not exceed five times the dead loads.

When the building frame is subjected to herizontal loads acling
al the joinls, a procedure similar to the one described in the Lhird
paragraph of Arl. 3.14 may be used.

Wilh due regard to plastic deformation (Fig. 17.15) Lhis pro-
cedure will be based on the following considerations: at cach floor
level the resultant of all horizoutal forces transmitted from the up-
per floors will equal the resultant of shearing siresses acting across
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the top scctions of all the columns of the lower Noor. Tt will be
assimed that this resultant is distributed among all the columns
of thal particular floor in direct proportion to the ralio between
the wltimate strength of the column cross seclion in bending and
the design length of the same column. When all the columng have
the same length, it will be assumed that the resullant will be dis-
tributed among all the columns in dirccl proportion to their ulti-
mate strength, In that case the maximum hending moment at the
upper and lower seclions of each column will be given by

U L B ¥ o0y
ﬂjﬁ, wlt = MC.!:II = —LEEE?LQ

When balancing all the intermediate joints one must take care
to distribule the column bending moment among the floor beams
also in direct proportion to the ultimate strength of the latter..
In the first approximalion the ultimate strength of the floor beams
may be computed disregarding the influence of normal stresses.
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5.15. DESIGN OF REDUNDANT THUSSES

The plastic design of redundant trusses is based on the same con-
sideration as that of the framed structures with rigid joinls and
the main diflfienlty lies once again in the fact that the Failurc pat-
tern is not known belorehand. It may become Lherefore necessary
lo examine a large number of different possibilities.

It is clear thal actual failure will follow the pattern correspond-
ing Lo the minimum value of the wltimate load.

Let us examine the statically indeterminate truss of Fig. 18.15
provided with a single redundant member. Failure of this Lruss
will occur when the elastic limit of the material is exceeded in at
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feast, Lwo of its members. Since the truss contains 17 bars, all the
possible combinations of two bars oul of 17 must be examined.
Even if the impossible combinations ave rejected, the remaining
number will be so greal that no practical solution of the problem
could be altained in this way. Consequently, it becomes much
easier to compute all Lhe stresses in the redundant Lruss regarding
it as an elastic body and to find the member in which the elastic
limit will be exeeeded in the first place. When Lhis member is
found, the stresses in all the other members are recalculated again
on Lhe assumption that the stress in the first one will remain con-
stant and equal to N,y = mRF. [n that way the second bar in
which the elastic limit will be again excceded may be found. [1 will
be necessary to carry out similar computations as many times as
Lhere are redundant members plus one. Ilaving determined Lhe
lailure pattern of the strmeture under consideration, the ultimate
loads will be deduced from the equilibrium of the mechanisin into
which the truss has been converted.

Assume, for example, that the elastic limit will be exceeded at
first in bars 7 and & the ultimate loads for which are given by

IV,_ ulp = m!fFl and 11\"2'“;: = mRF-z
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The magnitude of load P causing the failure of the truss will
be oblained from the equilibrium of moments about point A of all
the forces acting Lo the lelt of section /-7 (see Fig. 18.15)

Eﬂ'f;\ =0, Pmd—z\«’i, u”h—Nz, uggl":ﬂ
wherefrom
AT
Puf!: Af.?fff"é”ﬂ.?.rifr =
The design of redundant trusses is [urther complicated by the
fact that compressed bars may loose their stability well before
the internal forces become equal to the nltimate bearing capacitics
mHF of the corresponding members. In that case it becomes neces-
sary to find the critical loads for all the compressed elements. It is
worth noling that a redundant truss can fail not only during the
application of the loads but also during unloading. In the U.S.5. 1.
this queslion has been studied in detail by Prof. 8. Berngtein and
Prol. N. Streletsky.

mR (RF 4 ri'y)
d

6.15. REDUNDANT STRUCTURES SUBIECTED TO REPTATED
LOADING

The unloading of a redundant structure stressed beyond its
clagtic limil leaves residual strains in a number of ils members.
These strains and deformations may increase wilh each successive
loading Jeading finally Lo the failure of the structure. The gues-
tion is of the greatesl importance for practically all structures are
loaded and unloaded repeatedly during their serviece life,

First, let us see what will happen to a redundant strueture if
a single load is repeatedly applied at the same place and then re-
moved. As an example, let us take the system consisting of an
absolutely rigid beam carried by three elasto-plastic hangers
(Fig. 19.15). A single load P is applied at Lhe centre of the heam.
In Fig. 20.15 we have represented the deflections sustained by the
system during a scries of successive loadings and unloadings.

It the magnitude of the applied load P’ is smaller than that of
the ultimate one, but sufficiently large to provoke plastic deforma-
tion of the central hanger, this hanger will retain upon unloading
a residual strain. The two other hangers even if Lheir elastic limil
has never been exceeded will also remain strained for Lhey are
connected to the ceniral hanger by means of the rigid beam. Llence
upon unloading the two ouler hangers will remain extended and
the central hanger will be compressed, the sum of the vertical pro-
jections of Lhese throe forces remaining nil. Thus. the residual stres-
ses will be balaneed within the system itself. Let the residual strain
of three hangers be equal to A, When the structnre is loaded for
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a second time, compressive stresses will disappear in the central
hanger as soon as the load has reached a certain magnitude P. Any
additional increase of this load will lead to the appearance of ten-
sile stresses in this hanger whereafter its elastic limit will be exceed-

o
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Fig. 19.15 Fig. 20.15

ed once again. However, the magnitude of load P” will be consid-
crably greater than at the first loading and the residual strain
A" — A’ will be smaller. As soon as the applied load is reduced

{a) (&) (c) rd)
; y S
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Fig. 21.15

to its former value the stress in the central hanger will become again
equal to o,F while the stresses in the two other hangers will become
equal to those developed during the first loading.

The additional residual strains in the central hanger will decrease
with each loading and there will be a moment when they will be-
come completely stabilized, the system reverling thus to a perfectly
elastic state. In that case the magnitude of the load leading to the
failure of the structure will be the same regardless of the number of
its applications.*

+

*It is assumed/that the number of loadings is well below that Jeading Lo the
appearance of the fatigue phenomenon.
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let us examine also the case when different loads are repeated
in succession. The structure will consist of an elastic beam suspend-
ed Lo three hangers (Fig. 21.15) and loads P, and /2, will be applied
in turn, load Py leading to the appearance of plastic strains only
in the central hanger and load 2, only in the ouler ones. As for
Lhe beam itself we shall assume that its elastic limit remains unsur-
passed. Alter the lirst application of load P, permanent deformations
will set in and the elastic beam will become concave upwards as
indicated in Fig. 21.15a. The second loading will lead to the inver
sion of the cuevature of the beam and after unloading the beam will
remain deftecled upwards as indicated in Fig. 21.154. The subse-
quent loadings and unloadings will increase the residual sheains
of the hangers (see Fig. 21.15¢ and d) until failure will oceur due Lo
excessive strains, The bearing capacily of a structure will remain
uneflecled by repeated loading only if the inerease of residual strains
stops completely aller a certain number of loadings and unloadings.
and provided the internal forces due both Lo the application of the
loads and to the residual strains remain below the ultimate strenglh
of the corresponding cross section. The above condition may be
expressed by Lhe following inegquality

S —"— Su < Sul#

where § is the total stress in the member of the redundant struc-
ture regarded as perfectly elastic due to Lhe applied loads; 8, is
the vesidual or initial stress in the same member existing in the
ahsence ol all loads, and Su; is the ullimate strength of the same
inember.

It follows that the deformations of a struecture will remain limited
alter any number of load repetitions ounly if it is possible to lind
such a combination of residual (or initial) stresses that their resul-
tant with the stresses due to the given external loads applied in any
suceession will remain below the ultimate strength of the appro-
prialte members.

On Lhe contrary, if such a combination of initial stresses and
stresses due to the loads is impossible, the deformations of the strue-
ture will increase indefinitely until failure occurs.

This principle lirst established by Bleikh. reduces the determi-
nation of ultimale loads for continuous beams to a simple equali-
zation of maximum ordinates to the envelope bending moment
curve covering all possible loadings. In the U.S.8.R. this question
has been studied in detail by Prof. A. Gvozdev and Prol, A. Rzha-
nilsin,
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Angle
internal friction, 283-4
repose, 283
twist, 604, 624, 657
Arch(es)
bowstring, 145
centre line, 124, 128-0, 474,
525
fixed end, 431, 478, 480-527,
688-81. see also Arch(es), redun-
dant,
direct computation, 521-7
shrinkage, 520-1
t.emémmt.ure changes, 518-20
flat, 330, 3An1, 481, 487,
528
hingeless, 478, see also Archies),
tixed end
masonry, 478-9
maximum econpmy,
multihinged, 236-
neutral line, see Archies), centre
line one-hinge, 478
purabolic, 497-503, 520, 52{-7
rational configuration, 124
rectangular, 481
redundant, 478-528, 578
design, 684-92
influence lines, 503-18, 524-6
slress analysis, 481-4
approximate methods, 484-
a2l

128-9, 474

reinforeed concrele, 478, 518-21

rise, 104

span, 104

spandrel, 104

stulically indeterminate, 479, see

also Arch{es), redundant

three-hinged, 104-149, 478-9
puraﬁlic 279-80
strosses, 114-28
supporl reactions,
tied, 144-9
trussed, 229-33

10714

two-hinged, 403-4, 478, 480,
, t87
trogsed, 229-42, 578
with variable eross sections,
480-1, 528
Artienlation, space framed strueture,
243

Bar
curved, 331
idle, 216
inclined, 585
number, 20-1, 28, 30, 192, 248-¢
polygonal, 338 )
rectilinear, 338, 415-G, 588-90
substitule, 182-4, 196G, 254
Beam(s)
cantilever, 9, 87, 365-6, 599-601
influence lines, 48-9
bending moment, 44-8
reaction, 28-40
shear, 44-8
continnous, G677-84
analysis, 447-8
influence lines, 466-77, 583-7
bending moment, 468-76
reaction, 476-7
shear, 472-6G
eross, 216
curved, 335-f
deflections, 344
degree of redundancy, 79-80
double-span, see also Beamf(s),
two-span
cetling, 465-6
hinged, 77-8
imaginary, 362-3, 371-2
muitispan
hinged, 83-5
statically determinate, 24-5,
76-95, 275-6
with  overhang, see
cantilever

Beamf(s),
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polygonal, 95, 381-2
redundant, 5%3-601,
reference, 416-7
simply supported, 35-48, 77, 86
influence lines, 36-52
bending moment, 40-51
reaction, 36-40, 49, 52
; shear, 43-9, 51-2
single-spau,  5495-9
stability, 25, 80
statically determinate, 671-5
staticatly indeterminate, 675-84
trossed, 406-7
two-span, 464, see alse Beam(s),
double-span uniformly loaded.
416-7
wooden, 670
Belyakov, N., 13
Bending moments, 32-4, 40-3, 77
carry-over, 658, 660
determination, 53-7, 87-8, 114-7,
416, 435, 457-8
diagram, 32, 34, 77-8, 89, 117,
136, 463, 535-6, §540-1, 553-4,
?22-5. 595-9, 602-4. 608, 625-6.
137
smnmary unit, 543, 552, 562
onvelope curves, 461-6
cquilibrium, 36, 86-7, 128-9,
195-6, 193, 225, 240, 648
influence lines, see Tnfluence lines,
bending moment wmaximum,
70-6, 78, 465
minimuoin, 465
positive, 31, 33, 114
unhalanced, 658, 6to-1
Bent
statically determinate, 93
threo-hinged, 104, 148-9
Bernatsky, N., G35
Bernstein, 8., 694
Betty, 321
Bezukhov, N., 13
Bleikh, 696
Dolotin, V., 13
Dridge
cantilever, 84
deck, 207
highway, 567-7T1
railway, 478, 577
three-span, 567-71
throngh, 207

612-3, 849

Centre
olastie 430, 507

rotation, 22
instantaneous, 271-3
zerv velocity, see Centre, rotation
Chain, kinematic, 376
deformations, 376-3
Chord, truss, 151
Coefficient, see alse Factor
thermal expansion, 337, 521
Colesion, granutar materinls, 284
Conerete, sﬁrinkagc, 520-1
Constraints
imaginary, 6506
nocessary, 387-8
number, 248-8, 387
minimum, 246, 387
preventing joint dellection, 594-5
redundant, 249, 384-5, 888, 411,
576
veplacement by forces. 266-8
Contraction, thermal, see Strains,
temperature
Coulomb, 285
Counterbrace, 151
Cross, ., 655
Curves, envelope,
bending moment, 461-6
shearing force, 464

Deflections, 321-3
graphs, 438, 508
joints, 594-3
principal, 391-2
rigid joints, 601
secondary, 391-3
structures, 378-82, 408-0, 413-4,
421, 423-6
due Lo temperature change, 519,
618-24
unit, 391-2
Deformations, see also Delflections,
Strains
kinematic chain, 376-8
Diagoenal, truss, 216
Diagram
Maxwell-Cremona, 177, 379, see
alse BStress, diagram
virtuat displacements. 2064,
269-73
Displacemenls
computation, 340-82
accuracy control, 542-5
elastic loads method, 357-63,
486, 505-18
graph multiplication method,
3404
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strain energy method, 355-7
Vereshchagin's method, 341-
55, 363, 48p, 489
definition, 312
dimensionality, 327
horizontai, 421
linear, 328
negative, 263, 330
pusitive, 263, 275, 330
secondary, 429, 530
unit, 489, 49%-501
virtual
diagram. 264, 269-73
principle, 261, 263

Dome, Schwedler

Earthi, sre Malerials, granular
Eccentricity of force, 124
Eiasticity, theery, 11
Blements, see also Member(s)

bearing capacity, 674
failure, 672
secondary, 218, 223

Eunergy, strain, 317-21
Equation(s), see also  Formula(s)

equilibriom, 605, 632-5, 642,
58

kinematic, 643
simultaneous
abridged  solution, 545-30,
635
coefiicient checking, (i16-8,
637
solution
by graph multiplication
mothod, 612-5
by statical method, 607-12
strain emergy, 373-4
of threc moments, 444

uniformity, 664-70
working conditions, 670
Filonenko-Borodich, M., 18
Force(s)
external, work of, 310-0
influence lines, see Inftuence lines
interpal, see Stlresses
maximum, 70-6
normal, 33
determination, 114-7, 3634,
555-6
diagraan, 31, 356, §39-41
positive, 31, 33, 114
reactive, 606
resultant, 123
shearing, 32-4, 43
detertmination, 53-7, 87-9,
114-7, 545D
diagram, 34, 34, 89, 535, 639
direction, 417
envelope curves, 464,
maximum, 465
minimum, 465
negative, 34
positive, 31-2, 34
triangle, 286, 288
Formula(s), sez also Equalion(s)
Coulomb's, 284
Mohr's, 320-31, 337, 345, 355
Zhuravaky's, 314
Frume(s), ser  afsa  Siructure(s),
framed
double-span, 550-7, 564-7, 6246,
66146
knee, 336-7, 339-40, 378, 380,
398-401, 420-1, 423-4, 582
muitispan, 422
nonsymmetrical, 621-4
portal, 330, 345, 318-9, 303, 398,
401-3, 410-5, 417-8, 540, 5,

ultimate equilibrium, 676 503, 609-11, 618, 815, 627, 647,
Euler, L., 12, 106 601
Expansion, lhermal, see Strains, tem- rectangular, 618-0
perature redundant, G84-5

rigid, 3G3-6
symmetrical, 332, 540, 550-7,

Factor 564-7
distribution, 0637, 659-60, 0662 three-hinged, 94, 353-4
focal, 454-61 two-story. 557-61, 595, (41-2
lofl-hand, 454-6, 469 Framework, see Structure(s), framed

right-hand, 456, 469
load combination, 669

overload, 609 Galerkin, B., 13
aafety, 6H67-8, 681 Galilei, G., 11
scale, 271, 273-5, 278 Gauss, K., 545

etiliness, 657, 639, 661-2 Graph
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area, J43-4
deflection, 438
position of cenlroid, 343-4

Gyozdev, A., 13, B42, ton

1Einge(s)

crown, 238

dizgtribution along heam, %0-4
donble, 387

intermediate, 384-5

mobtle, 83

nnmber, 74

ordinary. 386-7

plastic, 673, 681-2, 687, 681

Mooke, B, 12
Hyperboloid. Shukhov’s, 243

Iufluence line(s)

bending momenl, 4-31. 04-3,
135, 144, 279-80, 434, 436,
468-Tt, 513, 631

conzlruction

kivematic method, 261-80
431, 43h-40). 586

method of instantavcous cen-
tre of rotalion, 264-5

neobral point method, 139,
144, 234, 241

stope and deflectiong method,
64903

statical mothod, 431

coulinwous bheaws, 466-77, H85-T

core mogment, 144

criticat apex, 62

normal Torce, 138-9, 215, 313

reaction, 36-400, 49, 52, 91, 93-4,
130-42, 445, 213, 234, 228,
241, 482, 436G, 476-7

redundant  structures,  434-40,
504-14

ghear, 44-9, 51-2, 91-3, 135-7,
247, 270, ASE3. 43T, 4726
313, 6H2

similar, 71

stress, [4)-216, 223-33,  238-9,
2779

Lhrust, 224, 234, 238

1

Tutegrul, Mohr's, 344, 346-7

Joints

defleclion, 594-5, il
hinged, 18
number, 248

rigid, 17-8, 379, 590, 655
deflections, 601

Keldysh, V., 668
King-post, 217
Krylov, A., 13
Kulibin, T., 106

Lagrange, 1., 12
Line
cleavago, 285
deflection, 363-7, 371
elastic 577, 589
influence, sce Tnflueice lines
pressure, 123-6, 479
slip, 283
Load(s)
unlisymmeltrical, 536-42, 0646-7
axle, 74
concentrated, 34, 5H2-4, {89, 359,
525, BUT
moving, 59-(i8
eritieal, 62, 67
dead, 461-3, 476
design, 669
clastic, 363-7T2. 430, 506-9, 517
equivalent, 70-6
imaginary, 420
indirect application, 49-52
live, 461-3
most unfavourable position, 35,
5869
moving., 345, 67, 466, 470, 479
uniformly distributed, (8-9
posilien of conlre of gravity, 429
principle of superposition, 33
repeated, 6094-6
statical, 310
symmetrical, 5306-42
transformation, 538-42
ultimate, 668-9, G78
uniform, 54-7, 189, 59¢
uniformly distributed, 34, 343
Loading, see Load(s)

Masses, elastie, 430
Materials, granular
aclive pressure, 284-92
angle of internal friction, 283-4
angle of repose, 283
cohesion, 284
partieular cases of pressure com-
putation, 298-305
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parosity. 282
properties, 282-4
Maxwell, J.. 310, 325
Membher(s), see also Element(s)
idle, 249
redundant, 249, 3778
stiffness factor, 657
Lruss, groups of, 218
Method(g) 1
displacement computation, see
Displacements, computation
inflluence line construction, see
influence line, construction
of moments, graph-anatytical, 455
Pancetel’s, 290-2
stress determination, see Stress(es),
detorminalion
Moment
bending, see Bending moment
core, 143-4
of iuertia, 379, 480, 521, 528
origin, 156
reactive, GO5-fi
slatical, 340

Panel, 49, 151
lenglh, 2106
Papkovich, 1., 13
Pile, sheet, 282
Plane
cleavage. 285-6, 2945, 302, 307
slip, 285
Plasticily, theory. 11
Plate
hearing, 15
pin-conneeted, 270-3
single, 269-70
Poinl
focal, 454-61
teft-hand, 454-6
right-hand, 456
neutral, 131-5, 239, 241
panel, 49, 151
Polygon
foree, 122, 174-7, 179
unicular, 122
Poncelet, 290
Ponomarev, 8., 13
Porosily, of granular materials, 282
Pressure
earth, 282, 285
active, 284-92, 295, 305
direct computation of, 202-8
wnit, 296-7, 301-2, 305
hydrostatic, 303-5

of impervious soil surmonaled by
water, 304-5

against polygonally shaped sur-
face, 301-3

water, 205

water salurated earth, 303-4

wind, (69

Principle

of superpasition, 35, 310, 413-5,

439

of virtual displacements, 261,
263

Prokol';o\-‘. I.. 43
Proskuryakov, L., 217

Rabinovich, 1., 13
Reaction{st, 84-7, 411, 465,
see also Supporls, reaclion
abutment., 240, 371

G ""h

analytical method of determin-
ing, 107-8
graphical method of  determin-

ing, 108-{()
horizontal compouents, 108
imaginary, 466
influence  lines,  see
line(si, reaction
redundant, 521-4
unit, £10-7
vertical component, 108, 266
Redundancy, degree, 383-4, 386
Rzhunitsin, A, 608

Inflluence

Semikolenoy, G,, 77
Shukhov, V.. 160
Shear, see Foree, shearing
Smirnov, A,, 13
Snitko, N.. 13
Span, truss, 151
Strains, see also Dellections, Delorma-
tions
plastic, §71-2
temperature, 337-40), (18-24
Strengtl,
design, 69
uttimale, 69
Stress(es)
in arches, 114-28, 481-521, 528
due to concrete shrinkage, 520-1
determination
accuracy check, 556-7
analytical method, 114-21
approximate moethods, 484-
021, 00406
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combined method, 646-8
direet method, 182-6
olastic centre method, 426-31
focal points method, 453-61
graphical  method, 122-8,
174-82
method of bar replacement,
254-6
method of forees, 389-94,
297-8, 408, 588, 0(41-2,
G47-8
method of juints, 163-74,
{82, 192, 204-5, 251, 253-5
method of moment distribu-
tion, 655-66
method of moments, 155-63,
182, 208-3, 210, 251-2
method  of reducing  space
strucliure to plane  ones,
256-7, 259-60
method of seetions, 161-3,
251, 257-9
method  of shears, 203-4,
251-3
mixed method, 641-6
=lope and deflections method,
588-653
diagram, 177-82, 328-9, 415-23,
582, 618
digtribution in trusses, 185-H
due to erection defect, 581
in framed structures, 182-6, 199-
216, 550-75
normal, 143-4, 417
in redundanl structures
dug to movement of supports,
410-5
due Lo temperature changes,
408-10, 518-20
in three-hinged arches, 114-28
in trusses, 153-82, 217

with rigid joints, 580
rigidity, investigation by zero
load method, 192, 249-50
simple, 20, 191-5, 19!]—213,
393-4, 411-3
auxiliacy, 425
imaginary state. 412-4
space, 243-60, 378-82
stahility, 191-9
statically determinate, 26,
182-6
three-dimensional, see Strue-
tures, framed. space thrust
devetoping. 223-33
hinged, 358, 366-72
inaginary state, 3601, 4i2-4
farge-span. 106
masonry, 67
multispan, 213
plane, 26-30
redundant, 383-5, 383, 303, 426,
590-3, 654, 6946
analysis, 304-408, 520-87.
620, 6846-8, 653-66
grooping  of uuknowns,
533-6
use of symmelry, 329-33
equilibriam, 419
influence lines, 431-40, see
also Tofluence lines siresses
in, 408-15
reinforeed concrete, 667
statically  delorminate, 26-30,
182-f, 213, 248-51, 482
statically indeterminate, 206-7,
383, 394. 423-6, 581-5
see also Structures, redundant
symmelrical, 529, 538
analysis, 624-41
througit, see Structures, framed
ultimate state, §65-9

Sireletsky, N., 13, 668, 694 Strat, 151
Stringer, 49 Supports
Slructure(s) built-in end,
adequate strength, 667-8 dlSpIﬂ(‘L'ment& 5726 410-5
deflections. 344-5, 408-0, 413, fixed, 22
421, 423-6 fixed end, 17
defurmalinns. 372-42 free, 15
design methods, 6H7-86 hinged imamaovahle, see Supports,
elastic centre, 482 fixed end

framed, 17-30, 150, 404-6
analysis, 628-41
complicated, 20, 482-6,

195-9, 213-6, 486 pendulnm. 15
influence lines for stresses, reaction, 15, 17, 26, 36-40, 54,
199-216 95, 105. 107- -14, 443-8, see also

imaginary, 664
movable, 22
movable roller, 15
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Leaclion(s)
setllemont, 415
space framework, 245-8
spherical fixed, 245-6
spherical movable, 245-6
spherical roller, 245-8
stable, 25
types, 15-7
System(s)
arched, 12
auxiliary, 216-8
complicated., 250
displacement graph, 358-50
hinge-connected, 21, 330
real state, 328
stable. 20, 22-3, 25-7, 192, 194
statically determinate, 30, 236,
252

statically indeterminate, 30

three-hinged, 104-7

tranzformed. 182-3, 195-6

triangulaled, uses, 12

unity state, 328

unstable, 18. 21
instantaneously, 18, 23, 25,

193-4, 196, 250, 270, 272
unyielding, 18, 21, 23

Tank, clevated, 252
Theorem
Castilliano’s, 355-6
Maxwell's, 325-7, 375, 391
of reciprocal reactions, 13
ofﬁreciprocui works, 321-5, 413-5,
13

of three moments, 441-53
Zhuravsky’s, 33, 358, 416-7
Thrust, 1135, 226, 240
influence line, 224
due to temperalure change, 520
Tie, 151
Frain, standard, 72-3
Trussies)
arched, 153, 223
bridge, 153, 243, 277-0
cantilever, 153, 252
classification, 152-3
continuous, 577-8
crescent, 153
deflections, 345
double, 153
donble Warren, 153
end-supported, 153, 202-3
equilihrimn, 28
hinge-jointed, 18, 28, 236

Mowe, 152, 188
with inclined supports, 223-9
K-, 153
muitiple, 153
parabolic, 189
parallel chord, 152, 216
plane, 17, 20, 251
wolygonal, 152,
tsl, 153
Pratt, 152, 188, 205-7
redundant, 693-4
roof, 153, 658-61
simple, 20, 28, 30, 153
nimber of bars, 20-1, 28, 30
number of joints, 20-1, 28, 30
slresses in, 153-82
statically determinate, 28, 30, 153
statically indeterminate, y 426,
438, 575-81, 643
strain energy computalions, 321
with subdivided panels, 216-23
three-hinged, 104
theough bridge, 220, 278-9
triangular, 152, 189, 209-13
unstable, 21-2
uses, 12, 150
Warren, 152, 188
subdivided, 217
Whipple, 153

Yereshehagin, A, 341
Vinei, L., 11
Vlasav, V., 13

Wall(s)
pile-, 281-2
relaining

loads, 281
pressure on, 282-309, see also
Pressure
stability, 287
types, 281-2
useg, 12
Wedge theory, 2857, 305
Work
elementary, 315
of external forces, 310-6, 3225,
614

of moment, 312, 314
of shearing stresses, 315
in terms of internal forces, 322,

328

Zavriev, K., 13
Zhemochkin, B., 13
Zhuravsky, 33
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